Editorial Board (April 2019 – March 2020)

Hideaki HOTCHI (Accelerator Division)

Takayuki YAMAZAKI (Materials and Life Science Division)

Masaharu IEIRI (Particle and Nuclear Physics Division)

Kazuo GORAI (Information System Section)

Shigeru SAITO (Transmutation Division)

Fumihiro SAITO (Safety Division)

Shinji NAMIKI (Users Office Team)

Naomi EBISAWA (Public Relations Section)

Cover photographs

Photograph ①: KOTO circuits, output connectors
Image credit: Masahiko UOTA

Photograph ②: Extremely cold world
Image credit: Koji NUNOMURA

Photograph ③: Neutrino Experimental Facility
Image credit: Hiroshi ITO
J-PARC Annual Report 2018

Contents

Preface ... 1

Accelerators .. 3
 Overview of the Accelerator .. 3
 Linac .. 6
 RCS ... 9
 MR .. 12

Materials and Life Science Experimental Facility ... 15
 Overview .. 15
 Progress of the Neutron Source Section ... 16
 Neutron Science Section .. 17
 Neutron Device ... 18
 Muon Section .. 19
 Technology Development Section ... 20

Particle and Nuclear Physics ... 23
 Neutrino Experiment .. 23
 Hadron Experimental Facility .. 24
 Strangeness / Hadron Physics Experiments ... 25
 Kaon Decay Experiment ... 25
 Muon Experiments .. 26
 Highlight: First Major Result from KOTO: Breaking the World’s Best Sensitivity for a CP-Violating
 Rare Kaon Decay by an Order of Magnitude ... 26

Cryogenics Section .. 29
 Overview .. 29
 Cryogen Supply and Technical Support .. 30
 Superconducting Magnet System for T2K ... 30
 Superconducting Magnet Systems at the MLF ... 31
 Superconducting Magnet Systems at the HEF ... 31
 R&D for the Future Projects at J-PARC .. 32
 HTS Maglev Coaster for Demonstration .. 32

Information System .. 33
 Overview .. 33
 Status of Networking .. 33
 Internet Connection Services for Visitors and Public Users of J-PARC 35
 Status of Computing .. 36
Preface

This volume describes the progress made at J-PARC in fiscal year 2018, from April 2018 through March 2019.

We have been steadily improving the stability and beam power of the facilities towards the design power of 1 MW at the Material and Life Sciences Experimental Facility (MLF) and 0.75 MW for Fast Extraction (FX) and 0.1 MW for Slow Extraction (SX) at the Main Ring (MR).

At MLF, we were able to perform a continuous operation at 1 MW\(^1\) for more than an hour. It provided a confidence to operate the MLF with the design power in a foreseeable future.

At the MR, we were able to provide a highest possible beam power operation within the current limitation of hardware, both in FX and SX mode. However, to our deepest regret, the SX beam time was cut short due to a malfunction of one of the bending magnets in the beam-transport line, 3-50BT, which transports the beam from the Rapid Cycle Synchrotron (RCS) to the MR. It clearly represented one of our weak points in the maintenance scenario, which will be improved soon.

\(^1\)The operation at 1 MW means, the beam power at the RSC is 1 MW, and the extracted beam power to the MLF was 932 kW, due to beam bunchedness planned for an MR injection.
The continuous efforts to maintain the facilities with high availability and high beam power have resulted in many impactful scientific results produced with the users from both domestic and oversea research institutions and industries. Those results are described in this volume. Some of them were also shared with the community and society through press releases at a rate of more than one per month. We will continue this high level physics production mode by deepening and widening the collaborations with the users from all over the world, across the fields.

As was done in the previous years, we have been enhancing the collaboration with domestic universities, oversea institutions, and industrial sectors. We hope that deeper and wider collaboration will provide more impactful outcomes. It also helps creation of the future not only by expanding the frontier of academic knowledge and the variety of materials, but also by fostering the next generation of researchers with an extensive experience in cutting-edge facility operation, who can, in turn, produce the next generation of research facility for the future.

“High power beams for the next stage of our life!”

Naohito SAITO
On behalf of the J-PARC staff members,
Director of J-PARC Center
The J-PARC accelerator complex consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a Main Ring Synchrotron (MR, 30 GeV). A proton beam from the RCS is injected to the Materials and Life Science Experimental Facility (MLF) for neutron and muon experiments. The MR has two beam extraction modes: fast extraction (FX) for the Neutrino experimental facility (NU) and slow extraction (SX) for the Hadron experimental facility (HD).

The operation in FY2018 is illustrated in Fig. 1. The topics related to the beam operation are as follows:

Fig. 1. Accelerator operation in FY2018 (includes a short period at the end of FY2017).
(1) Operation for the MLF

We started a new operation run on April 4, 2018 at 400-kW beam power for the MLF user operation. The beam power increased to 500 kW on April 19. The same beam power was maintained during FY2018 except for the startup and tuning/study.

After completion of the user operation before the summer shutdown, we had a study time in the beginning of July 2018. During that time, we successfully demonstrated 1 MW equivalent (8.3×10^{13} protons per pulse and 25 Hz) and one-hour duration operation for the MLF. The 1-MW demonstration took place for the first time in January 2015 as a single shot operation. Those results were the starting point of our work to achieve a continuous 1 MW operation.

Although the MLF beam power remained at 500 kW before and after the summer shutdown, the linac beam current was increased from 40 to 50 mA, which was a nominal current for 1 MW operation.

The shutdown period before and after the new year holidays was slightly longer than normal and continued from the end of December to mid-January. We had a power outage in the end of December due to refurbishment of an old power station of the Nuclear Science Research Institute of the Japan Atomic Energy Agency, to which our power line is connected. In mid-January, the MLF did not accept the beam because of the transportation of a used neutron production target to the storage building. We started the linac tuning on January 18, followed by the RCS and the MR tuning. The MLF user program started on January 23 and ended on March 26, as scheduled.

(2) Operation of the MR for the Neutrino Experiments (FX mode) and Hadron Experiment (SX mode)

The operation of the MR before the summer shutdown in 2018 was stable. The MR delivered beams to the NU at about 490 kW by the end of May. Then we switched the extraction mode from FX to SX and started tuning for the HD. We smoothly ramped up the power to 51 kW and the user program ended on June 29 before the summer shutdown.

The beam operation of the MR was suspended in the period from October to December due to improvement work on the experimental facilities: refurbishment of the Super-Kamiokande detector for the Neutrino experiment, and maintenance and upgrade work on the HD facility. During the beam suspension, a realistic test was carried out for a new magnet power supply for a future upgrade.

In January, we had a short (3-day long) machine study of the FX. Then, the beam tuning for the HD started in February, followed by the user program. The beam power was 51 kW as in the previous HD run in June 2018. The user program ran smoothly until March 18, when one of the bending magnets (named B15D) had a failure in the beam transport line from the RCS to the MR. The cause of the failure was a layer short of a coil.

The operation statistics for FY2018 (from April 2018 to March 2019) are shown in Table 1 and Fig. 2. The total operation time, which was defined as the shift leaders’ on-duty time at the control room, including startup and RF conditioning, was 5,824 hours. The net user operation hours and the beam availability rate for each experimental facility were as follows: 4,129 hours (94%) for MLF; 1,053 hours (86%) for NU; and 1,089 hours (74%) for HD. These statistics show that the linac and the RCS operated properly. The cause of the low availability for the HD was the B15D trouble in March 2019.

The downtime by components is shown in Fig. 3. There were several causes of the downtimes. Over the last few years, we have taken many countermeasures against troubles at the linac: stabilization of the cooling water flow, inside cleaning of some SDTL cavities, replacement of old bias power supplies for the klystron high voltage power supply system (HVDC). We still had a long HVDC down time, due to a failure of the old 324 MHz klystron.

There were no serious downtime events at the RCS. Discharges in the high voltage cables in the kicker magnet system were one of the major causes for the occasional minor interruptions.

The MR had several troubles: cooling water flow drop (QM), timing signal distribution system trouble (BM), vacuum tube failures (RF), oil leakage at the outside transformer (Injection). The longest down time (324 hours, out of the range) was due to a problem with the B15D magnet in the “Others” category.

Most of the improvement and upgrade work was carried out during the summer shutdown. These improved items, major causes for downtime, and beam power history are described in further chapters.
Table 1. Operation statistics in hours for FY2018. Figures in the parentheses in trouble columns show the lost time as a percentage.

<table>
<thead>
<tr>
<th>Facility</th>
<th>User Time (hours)</th>
<th>Trouble, Acc only (hours)</th>
<th>Trouble, Fac only (hours)</th>
<th>Net Time (hours)</th>
<th>Availability, Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLF</td>
<td>4,388</td>
<td>252 (5.7%)</td>
<td>6 (0.1%)</td>
<td>4,129</td>
<td>94.1</td>
</tr>
<tr>
<td>Neutrino (FX)</td>
<td>1,224</td>
<td>149 (12.2%)</td>
<td>22 (1.8%)</td>
<td>1,053</td>
<td>86.0</td>
</tr>
<tr>
<td>Hadron (SX)</td>
<td>1,477</td>
<td>366 (24.8%)</td>
<td>22 (1.5%)</td>
<td>1,089</td>
<td>73.7</td>
</tr>
</tbody>
</table>

Fig. 2. Operation statistics for FY2018. The total operation time was 5,824 hours.

Fig. 3. Downtime by components in FY2018.
Linac

Overview

The J-PARC linac has been operated with a nominal peak beam current of 50 mA since October 2018. High availability of approximately 94% (to the MLF) was achieved during FY2018 at the linac. Three 10-hour long beam stop events occurred due to the failure of a 324-MHz klystron, an ion source antenna and a klystron anode modulator. The number of trips due to the RFQ and the beam loss monitor (BLM) was still higher than that of other components. In the summer of 2018, we reconsidered the high voltage and the impedance of proportional counters for the BLM not to detect the event considered to be misfired (e.g.: fired by only one BLM). As a result, the trip rate due to the BLM decreased dramatically from 15-20 a day to a few a day. No increase in the activation of the accelerator components caused by this measure was observed.

Accelerator components status

The operation history of the ion source in FY2018 is shown in Fig. 4. We have gradually increased the continuous operation time of the ion source. In RUN#79, a continuous operation of approximately 2,200 hours was achieved with the typical beam current, pulse length and repetition rate of 47 mA, 300 μs and 25 Hz, respectively. After the 2018 summer shutdown, the peak current from the ion source increased to 60 mA so that the linac could inject the beam current of 50 mA into the RCS. At the end of RUN#79 and RUN#80, the ion source extracted stable 72 mA beams for high-intensity beam studies at the linac. In the RUN#81, unscheduled ion source replacement was performed due to an antenna malfunction during the operation.

Figure 5 shows the time variation of number of RFQ trips. We suppose the origin of the trip is the sparking between vane tips, which had been contaminated by carbon-related contaminants. Since the cryopumps installed at the RFQ have the potential to improve the vacuum condition, the vacuum ducts for the cryopumps were changed to manifold-type configurations in the 2018 summer shutdown. As a result, the vacuum pressure in the RFQ decreased by 20%. No significant improvement in the trip rate has been seen so far, but we will observe the trend in a long-term operation.

After the Great East Japan Earthquake in 2011, we could not input the design rf power into some SDTL cavities due to the multipactor effect. To improve this situation, we have polished the inside of the cavities by using acetone during the summer shutdown since 2015. After the treatment, the multipactor region disappeared completely, except in the SDTL05A cavity. We think that the SDTL05A was not cleaned up sufficiently, therefore we are going to retry the cavity cleaning of the SDTL05A in the summer of 2019.

The operation of the ACS cavities was more stable than the one of the other cavities. The number of trips of all the ACS cavities was less than once per day. In the summer of 2018, we replaced an RF window of one ACS cavity with a brand-new one in order to check the surface condition of the RF window, which has been used...
for about five years. The visual observation confirmed that the window has remained in good condition. We think that a periodical replacement of the ACS RF window will not be necessary for the next few years.

The RF chopper system, which is installed just after the RFQ, consists of two RF-deflecting cavities and a beam scraper. During every summer shutdown, we removed the used scraper from the beam line and measured the depth of damaged area using a laser microscope. After a 300-kW single bunch 2-month operation and a 400-kW single bunch 3-month operation, the depth of the damaged area was observed to be 0.7 mm. The result shows the depth can be evaluated to be approximately 1 mm in the case of a 9-month continuous 1-MW operation. This is tolerable level because the beam axis thickness of the scraper is 40 mm.

Klystron system status
We have been using two types of klystrons, such as a 324-MHz klystron and a 972-MHz one. The operation times of the two types of klystrons as of March 2019, are shown in Fig. 6. Eight out of twenty 324-MHz klystrons reached approximately 65,000 hours of operation, which has been the entire period since the linac operation was started. Most of the 972-MHz klystrons exceeded 30,000 hours of operation. In FY2018, one of each type of klystrons was replaced due to their performance degradation. A test-stand for the klystrons was built to perform off-line conditioning before installation in order to save replacement time. The test-stand will start to operate at full capacity in FY2019.

Beam monitor development
For higher intensity beam measurement, we have focused on a carbon nanotube (CNT) wire with its high tensile strength and electric conductivity. A new wire scanner monitor (WSM) based on the CNT wire (CNT-WSM) was developed, as shown in Fig. 7. The result of the off-line beam test showed that the CNT-WSM had the same dynamic range as the carbon-wire-type WSM, which has been used at a beam transport between the RFQ and the DTL. In the summer of 2018, we installed the CNT-WSM at the MEBT1 section. Currently, the CNT-WSM works without any issues at the beam line.

To conduct more precise beam studies by measuring a longitudinal beam profile, since 2016 we have
implemented the plan to install three bunch shape monitors (BSMs) at the ACS section. The last BSM was installed in the summer of 2018, and the installation program at the ACS section was completed.

Beam study

The beam studies have been performed to resolve some issues such as the Intra-Beam Stripping (IBSt) mitigation in the ACS section, the momentum stability at the linac exit, the precise beam measurement at the MEBT1, and so on.

The dominant source of the beam loss is found to be IBSt in H beam in the ACS section. Because the loss rate by the IBSt can be affected only by a beam optics, some optics with the different temperature ratio between transverse and longitudinal planes (Tx/Tz) were examined. Numerical simulations and the beam study results showed that the loss rate with Tx/Tz=0.7 optics was 40% lower than that with Tx/Tz=1.0, which is the J-PARC linac baseline design based on the equipartitioning setting. The Tx/Tz=0.7 optics will be applied to the operation from April 2019.

We are considering a further upgrade plan to increase the RCS beam power to 1.5 MW. To realize the upgrade plan, the beam current and the beam pulse length must increase to 60 mA and 600 μs respectively. The first 400-MeV and 56-mA beam at the linac exit was demonstrated in December 2017. In this demonstration, a significant decrease of the beam transmission was observed in the RFQ and the beam scraper of the RF chopper system. At the second demonstration, which was conducted in July 2018, we increased the RFQ tank level and expanded the scraper gap without affecting the extinction in order to improve the beam transmission. At the demonstration, the beam current from the ion source was also increased from 68 mA to 72 mA. By applying these measures, we successfully obtained 400-MeV and 62-mA beam at the linac exit, as shown in Fig. 8. A numerical simulation showed that the reduction of the beam halo from the ion source was effective in improving the RFQ transmission. Further high-intensity beam studies will be conducted.

![Fig. 8. Result of a 400-MeV and 60-mA demonstration at the linac.](image)
RCS

Operational status
In JFY 2018, the operation beam power of RCS was started at 400 kW for the MLF. It was immediately increased to 500 kW at the end of April and maintained at that level during JFY 2018, except in the beginning of October. Meanwhile, the MR output power was steadily increased as the MR commissioning progressed. Figure 9 shows the change in the RCS output power with respect to time.

This year, there were no serious problems in the RCS. The major problems were the discharge of Pulse Forming Network (PFN) cables in the kicker magnet system. The discharges occurred twice, and we were not able to recover quickly. Therefore, after the second discharge incident the bump orbit made by the correction magnets near the extraction area compensated the shortage of the kick angle. Although the loss at the septum magnets increased several times over the usual operation, the dose rate was usually 100 μSv / h or lower, so we considered it acceptable and continued the operation under this condition. The dose after the operation was within the expectations.

The availability of the RCS was summarized in the Table 2. The operation time for the MLF over the year was approximately 4130 h, excluding the commissioning time, and downtime of approximately 54 h; therefore, its overall availability was 98.4%. For the Neutrino and Hadron users, the availability of RCS was almost the same as in the MLF case and the availability value was around 99%.

Table 2. Summary of the availability

<table>
<thead>
<tr>
<th>Facility</th>
<th>User time (hr)</th>
<th>Trouble in RCS (hr)</th>
<th>Availability of RCS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLF</td>
<td>4129:46</td>
<td>53:52</td>
<td>98.4</td>
</tr>
<tr>
<td>Neutrino</td>
<td>1053:32</td>
<td>8:28</td>
<td>99.2</td>
</tr>
<tr>
<td>Hadron</td>
<td>1089:28</td>
<td>3:06</td>
<td>98.9</td>
</tr>
</tbody>
</table>

Maintenance and improvements
1) Foil production
In J-PARC RCS, The Hybrid type thick Boron-doped Carbon (HBC) foil was used for charge exchange injection. It had been produced in KEK laboratory since the beginning of RCS commissioning. However, due to the retirement of the expert of the HBC foil production, the further manufacturing of the HBC foil in KEK became problematic. Therefore, the foil deposition system in KEK was moved to the J-PARC site to continue the HBC foil production. By using this system, we started research and development to produce more robust foil.

With some trial-and-errors, we produced new HBC foil. The performance of the new HBC foil was evaluated by using the heavy ion beam facilities in Takasaki Advanced Radiation Research Institute of National Institute for Quantum and Radiological Science and Technology before installing it in the RCS. The test result indicated that the new HBC foil would be almost as durable as the original KEK HBC foil. Finally, one new foil was tested during a 10-day user operation on June 2018, and it endured during this period. As a result, we have been using this new HBC foil from October for the full user operation. Figure 10 shows the new HBC foil before and after a 2-month operation.

2) Movable collimator installation
The beam collimation system removes the beam halo and localizes the beam loss to preserve the other accelerator components. The collimation system comprises one primary collimator, which scatters the halo particles, and five secondary collimators, which absorb those scattered particles. The radiation shielding around the collimator chamber was designed in a way that allowed the collimator system to absorb a halo of up to 4 kW.

In April 2016, a malfunction occurred in the VME system, i.e., the collimator’s control system, and this malfunction caused a vacuum leak.

After an investigation, it was found that the fifth secondary collimator was the source of the leak, which
was caused by a collision of the collimator blocks. We installed a spare straight duct, instead of repairing the broken collimator, for quick recovery.

After the user operation resumed, the residual dose was not as high as expected. Thus, we continued the user operation until the summer shutdown in 2016 under this condition. Following our temporary repair, we made a fixed collimator to replace the spare duct, and installed it during the summer shutdown period in 2016. During JFY2017, we improved significantly the reliability of the collimator moving system. The control system was changed from VME to PLC, and it included a redundant limit (software and hardware). The hardware was also improved to separate support point and vacuum boundary, and horizontal and vertical collimator positions are alternating to prevent hitting each of the collimator blocks. Finally, we installed a new fifth movable collimator system in the summer shutdown period in 2018.

Residual dose distribution and exposure during maintenance

Since the output power to the MLF was increased, the residual doses in the RCS were relatively larger than those in previous years.

Table 3 summarizes the radiation doses received by the workers during the summer shutdown period in 2018. A total of 49 workers were exposed to doses of more than 0.01 mSv, and their collective dose was 2.50 man-mSv. Eight workers were exposed to residual doses of more than 0.1 mSv, and the maximum dose received by any one worker was 0.24 mSv. Both the collective and maximum doses increased compared to previous years.

Table 3. Summary of worker radiation doses during the summer shutdown period in 2018.

<table>
<thead>
<tr>
<th>Dose (mSv)</th>
<th>Number of workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01–0.05</td>
<td>36</td>
</tr>
<tr>
<td>0.06–0.10</td>
<td>5</td>
</tr>
<tr>
<td>0.11–0.20</td>
<td>6</td>
</tr>
<tr>
<td>0.21–</td>
<td>2</td>
</tr>
</tbody>
</table>

1-MW TRIAL

At the beginning of July 2018, we carried out the trial of the 1-MW continuous operation. As a matter of fact, just before the 1-MW trial, we had a failure of the turbo molecular pump (TMP) at the arc section. This trouble caused contamination near the TMP failure point. Therefore, at the 1-MW operation, the pressure rises were slightly more than one order of magnitude, but three orders of pressure rise were found at the TMP failure point. Because of this vacuum deterioration, the signals of the beam loss monitors around the TMP failure point increased, and sometimes the beam was stopped due to the machine protection system. However, those signals were actually caused by the interaction between the beam and gas. Thus, there were no significant changes of the residual dose values before and after the 1-MW operation. Figure 11 shows the residual dose around the RCS tunnel before and after the 1-MW continuous operation.

Beyond 1-MW: Beam injection study

The result of the 1-MW demonstration showed that the beam loss in RCS was well controlled and RCS would have enough potential to accelerate a beam with power of more than 1 MW. Therefore, we carried out the trials beyond the 1-MW acceleration. However, the RF system in RCS does not have enough capacity to completely accelerate a beam more powerful than...
1 MW. The simulation results indicated that the present RF system can accelerate stably only a 1.2-MW beam just in the first 10 ms.

Thus, in JFY2018, we carried out the 1.2-MW beam trial with acceleration energy of 1 GeV. In this case, the beam was accelerated during the first 6.75 ms and immediately extracted after acceleration. After fine tuning under this condition, we obtained enough low-loss beam condition. Figure 12 shows the beam loss monitor signals with various beam power. This figure indicated that the signal intensities are almost proportional to the beam power.

Summary

The user operation at RCS has been enough stable. At present, RCS delivers 4.4e13 ppp, which were equivalent to 500-kW beam to the MLF and 6.5e13 ppp (780-kW equivalent in RCS) beam to the MR. It will be further increased step by step with carefully monitoring the neutron target status and the beam loss.

We achieved a 1-MW, 1-hr continuous operation in the beginning of July 2018. The 1-MW trial indicated some issues hindering a stable 1-MW operation. We will resolve those issues.

Trials beyond 1-MW were carried out. The results indicated that RCS had enough capability to accelerate a 1.2-MW beam if the RF system would be reinforced. Currently, we have been working on improvements of our RF system.
MR

Overview

The Main Ring synchrotron (MR) of J-PARC accelerates the 3-GeV beam injected from RCS up to 30 GeV. The 30-GeV proton beam is supplied alternatively to the neutrino experimental facility in a 2.48-s period, which is called fast-beam extraction (FX) mode, and also to the hadron experimental facility in a 5.20-s period, which is called slow-beam extraction (SX) mode.

The operation of MR was stable before the summer shutdown period in 2018. For the neutrino experiment in the FX-mode, MR successfully maintained the 490-kW stable operation and delivered a 500-kW, 50-shots trial with an acceptable beam loss. For the hadron experiment in the SX-mode, MR also achieved a 51-kW stable operation.

The MR operation after the maintenance period was resumed from January 2019. After the 3-day beam study in the FX-mode, the user operation with the SX-mode was started by using the 50-kW beam. The stability of the beam was satisfactory. However, a problem occurred in the bending magnet of the beam transport line from RCS to MR on March 18, 2019, caused by a short circuit between the layers of the magnet coil. It was fixed temporarily by making a bypass circuit for the shorted layer. (However, the beam operation was suspended in April again because another short circuit happened in other coil layers after three weeks of operation. Thus, MR has been suspended until the arrival of a new coil. It will be delivered in September 2019.)

As part of our plan for the future beam upgrade at MR, we continued the testing of a new bending-magnet power supply with higher repetition rate by using the real magnets in the MR tunnel. The test was conducted during the shutdown period in 2018, which was approximately twice as long as the usual one due to additional work to improve the experimental facilities. The long shutdown period is shown in Fig. 13 as the blank in the MR beam power history.

The details of the subjects described above are explained in the following section.

B15D magnet trouble

The bending magnet B15D in the 3-50BT line between the RCS and the MR had a layer short-circuit on March 18, 2018. It was noticed by the beam loss induced by the horizontal beam orbit deviation measured at the spot just after the B15D magnet. As the magnet current did not change at that time, a coil problem was suspected because the beam orbit was shifted by the change of the magnetic field in the magnet.

The B15D magnet is shown in the Fig. 14. B15D has two coils, an upper and a lower. Each of the coils consists of 5-unit coils. The unit coil is composed of two layers of 12 turns hollow conductor, as shown in Fig. 15. It was confirmed that the first unit of the lower coil has a different impedance from that of the others. Thus, an electric terminal, which bypasses the first unit, was connected as a temporary repair. (As a result, we could start the SX-mode operation. However, the second unit had the same problem in the end of the following month.) It was assumed that the short circuit was induced by the water leakage from the joint of the hollow coils. The assumption will be verified after removing the coil.

The user operation period suspended by the B15U trouble will be compensated after the summer shutdown in 2019.
SX-mode operation

The SX-mode operation of JFY2018 was stable except for the trouble with the B15D magnet. The beam power of 50-51 kW was maintained.

The spill duty factor, which is a very important parameter for the hadron experiments, has been improved from 50% to 55% by fine tuning of the transvers RF pattern, which makes the beam distribution uniform.

FX-mode operation

The beam power of 490 kW was achieved for the FX-mode user operation. The beam loss of the 490-kW operation was approximately 50 W along the 3-50BT line and 480 W in the ring. These values are sufficiently small.

A 500-kW trial was carried out as a beam study. 50 shots of 500-kW beam were successfully accelerated and extracted to the neutrino facility. The observed beam loss in the ring was 700 W. An example of the DCCT data for the 500-kW beam is shown in Fig. 16. The red line shows the number of protons in the ring. It keeps a constant value after the injection, which means that there is no significant beam loss. Although the amount of the loss may be acceptable, it is planned to perform the iterative tunings of several parameters for less losses and better loss localization.

New magnet power supply

Three of the new power supplies for the MR bending magnet have been installed in the new power supply buildings.

Each of them supplies the current to 16 magnets, which are 1/6 of the bending magnets in MR. The basic test of every component has been done. Then, the realistic test was carried out by using the real bending magnets in the tunnel in JFY2018.

The examples of the data are shown in Fig. 17 for the FX-mode and in Fig. 18 for the SX-mode, respectively. Blue lines in the figures show the output current pattern of the power supply. For the FX-mode, the designed repetition period of 1.32 s was achieved. It is required to increase the beam power for the FX-mode.
up to the original design beam power of 750 kW and more. For the SX-mode, it was confirmed that the current ripple on the flat top was approximately one order smaller than that of the present power supply. It is sufficiently small for the hadron experiment. In the next step, the durability of the power supply will be checked by long time operation.

Summary

For the FX-mode, the beam power of 490 kW was maintained for the user operation and 50 shots of the 500-kW beam were achieved by the beam study. For the SX-mode, the beam power of 51 kW was achieved for the users.

However, the MR operation has been suspended by the coil trouble of the bending magnet in 3-50BT line. The operation will be resumed after the summer shutdown period in 2019.

The work on mass production of magnet power supply has advanced. The results of test operation of the new power supply for the bending magnet, using the real magnets in the MR tunnel, show the sufficient power and stability we expected.
In fiscal year 2018, the operation of Materials and Life Science Experimental Facility (MLF) started with the neutron production mercury target (#8), which had helium bubbling system. On April 19, the proton beam power delivered to the target was increased from 400 kW to 500 kW and the operation continued very stably until July 2, 2018, followed by a 1-MW test operation for one hour on July 3. The beam availability of the target (#8) to the scheduled beam time was 93%. In the summer maintenance period, the target was replaced from #8 to #9 and the neutron production started on October 22 and continued stably until March 26, 2019.

The muon rotating target system has been delivering a stable muon beam to users without trouble since 2014. However, the potential damage of a flexible joint for transferring motor rotation to the graphite disk target has been a cause for concern. Some measures were taken to minimize the potential hazards expected in case of suspended target rotation. By ensuring that those measures were effective, the muon user program was resumed in the beginning of November after two weeks delay behind the original schedule. The operation continued until March 26, 2019, without troubles.

Due to the stable operation of the facility, the MLF was able to produce many excellent outcomes in various research fields, such as hard matter, soft matter, energy materials, engineering materials, biomaterials and so on. In addition to the research outcomes, there were many activities in the MLF in 2018 to enhance the collaboration with international/domestic users in academia and various industries. The Annual meeting of industrial application at J-PARC MLF was held on July 23 and 24 at Akihabara Convention Hall. The 3rd Neutron and Muon School was held from November 20 to 24. The 3rd ESS-J-PARC Workshop was held from November 13 to 15. On the first day of the workshop, the Swedish
Ambassador Magnus Robach delivered his greetings. Quantum Beam Science Festa which is a conference mainly for domestic users for MLF J-PARC and IMSS KEK was held in Tsukuba on March 12 and 13.

In the annual report, the research highlights, the technical developments and the collaboration activities with users in 2018 are described in detail.

Progress of the Neutron Source Section

Fiscal year 2018 started with a beam operation of 500 kW, which had been recognized as an important milestone to reach the final goal of 1 MW, because two targets failed consecutively during 500 kW beam operation in 2015 and, since then, considerable efforts were put into the design improvements of the next mercury target, target #8, to make it more robust and reliable during a high-power operation. Target #8 had been used at 300 kW and 400 kW since the last fiscal year and completed its user beam operation successfully on June 30, 2018, after a 3-month operation at 500 kW, which demonstrated the validity of the design improvement. In addition to that, target #8 was operated with 935 kW for one hour at the high-power beam study held on July 3. Reaching almost 1 MW within practical duration time was a great achievement of the J-PARC.

Gas-micro-bubbles injection into mercury and the high-speed mercury flow in a narrow channel formed by the double walled structure, shown schematically in Fig. 1, are the key measures to mitigate the pitting damage at the beam window which is the front end of the target vessel. At the high-power beam study, the vibration of the target vessel under the beam operation condition of 25 Hz was measured at almost 1 MW for the first time, as shown in Fig. 2. The displacement velocity on the top side of the target vessel at 935 kW remained on the same trend line with that measured at a lower beam power. It shows the efficacy of gas-micro-bubble injection to reduce the displacement velocity at the 1-MW operation.

The specimens were taken out of the used target #8 and the maximum depth of pitting damage on the inner side of the beam window was 18 µm, which was less than anticipated. This fact demonstrated the effectiveness of the present measures to mitigate the pitting damage. Then, target #8 was replaced with target #9, which has the same structure as target #8. The beam operation of target #9 had continued well at 500 kW with the high average availability of 93.5% as of the end of fiscal year 2018.

An important event was the transportation of the used target vessel from the MLF (Materials and Life Science Experimental Facility) to the RAM (Radio Activated Materials) building to save the limited space of the used components storage room in the MLF. A shielding container, 200 mm in wall thickness and 44 tons in total weight, was fabricated, and used in combination with the shipping container fabricated in 2017.

![Fig. 1. Measures to mitigate the pitting damage equipped in target #8](image1)

![Fig. 2. Displacement velocity at the top side of target vessel #8 at beam study](image2)

![Fig. 3. Transportation of a used target vessel](image3)
The preparation and rehearsal took almost a month and the used target vessel was transported successfully to the RAM building for the first time on January 16, 2019. The transportation is going to be held every year.

Neutron Science Section

1. User program

For the general-proposal round for 2018A, 175 general proposals and 5 new user promotion (NUP) proposals were approved from 260 submissions. Among them, 174 approved experiments and 9 reserved ones were executed. For 2018B, 190 general proposals and 8 NUP proposals were approved from 285 submissions. Among them, 178 approved experiments and 13 reserved ones were executed. Additionally, four newly approved long-term proposals started a 3-year project in the 2018B term. Fast Track Proposal, which is a mail-in program, has just started from the end of JFY2017 for Super HRPD at BL08 and NOVA at BL21. In 2018, 3 experiments were executed at BL08 and 2 experiments were done at BL21.

2. Instruments

This year, the MLF was stably operated with power of 500 kW. On July 3, a test operation with 1 MW power was performed for one hour. The high power was experienced in each beam line. On 4SEASONS and AMATERAS, inelastic neutron scattering from S=1/2 one-dimensional antiferromagnets were measured by using small samples of 0.3~0.5 cm

3. International activities

The 3rd Neutron and Muon School was held from November 20 to 24. 35 young researchers and graduate students from China, India, Korea, Thailand, Russia, United Kingdom, as well as Japan, participated in the school. The neutron science group contributed 9 neutron instruments for hands-on experiments (Fig. 4).

The J-PARC Center and CROSS hosted the J-PARC Workshop “Deuterium Labeling Study for Neutron Science” on January 15 and 16, 2019. We invited Dr. T. A. Darwith from ANSTO and 20 scientists discussed neutron studies on material and life sciences by utilizing deuterium labeling.

4. Resultant outcomes

The research activities in neutron science at the MLF resulted in more than 180 papers and 10 press releases. The number of papers includes articles in influential journals such as Nature Physics (1), Nature Materials (1) and Scientific Reports (6). Press releases include two detector developments, such as a high resolution (~11nm) emulsion type detector and a high-speed neutron imaging detector via a solid-state superconducting detector.

Dr. Takuro Kawasaki won the 16th Young Researchers Prize of the Japanese Society for Neutron Science for the development of stroboscopic measurements and leading research with the technique on SENJYU (BL18) and TAKUMI (BL19).

RADEN (BL22) group won JAEA President’s Award for the development of energy-resolved neutron imaging and leading researches on RADEN.

Fig. 4. Dr. Hiroi explaining the operation of the shutter control panel at TAIKAN at the 3rd Neutron and Muon School hands-on experiment.

K. Nakajima, Y. Kawakita, S. Itoh, and T. Otomo

1 Neutron Science Section, Materials and Life Science Division, J-PARC Center; 2 Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK
Neutron Device

As one of the activities at the Neutron Instrumentation Section of the MLF Division, research and development of a neutron polarizing supermirror with high-performance capabilities, such as wide bandwidth, high polarization, and availability at low external fields, has been conducted to meet a variety of research demands in the MLF. Fundamental study, including interactions between sputtering gas particles and growing layer, thin film magnetism, and characterization of the in-plane magnetic structure of multilayers for polarizing supermirrors using polarized neutron scattering, is required to develop the high-performance polarizing supermirror.

For ion beam sputtering (IBS), an Fe/Ge multilayer shows higher polarization than Fe/Si and is suitable for a polarizing supermirror. However, the reason for that phenomenon had not been fully understood. In the present study, the multilayer structure of the Fe/Ge and Fe/Si multilayers fabricated by IBS was investigated using the polarized neutron reflectivity measurement and scanning transmission electron microscopy with energy-dispersive X-ray analysis (STEM-EDX). Figure 5 shows the polarized neutron reflectivity profiles of the Fe/Si and Fe/Ge multilayers. One can see that the Fe/Ge multilayer shows higher polarization than the Fe/Si, as expected. The scattering length density (SLD) profiles, obtained by the fit to the reflectivity data, revealed that the SLD reduction in the Ge layer by 13% contribute to the SLD contrast between Fe and Ge layers almost vanishing for spin-down neutrons, as shown in Fig. 6. This accounts for higher polarization of the Fe/Ge multilayer. In addition, the STEM-EDX measurement showed that the incorporation of Ar sputtering gas particles, backscattered at the target, is responsible for a marked reduction in the SLD in the Ge layer.

The above investigations motivated us to fabricate an Fe/Ge neutron polarizing supermirror with 4994 layers ($m = 5$). The result of the polarized neutron reflectivity measurement is shown in Fig. 7. The reflectivity for spin-up neutrons was higher than 0.70 for the range $q_z \leq 1.085$ nm$^{-1}$ ($m = 5$), as designed. The polarization was higher than 0.972 for $0.217 \leq q_z \leq 1.085$ ($1 \leq m \leq 5$). These results open a possibility for fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. The mirror is planned to be tested at BL22 and BL17 of the MLF.

Reference

Muon Section

Rotating target system: concern after delight

The muon rotating target system is at the heart of the MUSE facility, located on the primary proton beam line of MLF. It consists of a large disk made of graphite, where the radiation damage due to the 3 GeV proton hitting at off-center position is relieved by spraying it along the circumference upon rotation. Since its installation in 2014, the target system has been enjoying stable operation, delivering muon beam to users with ever increasing flux according to the proton beam power that reached 500 kW this year. While the system was designed to allow a 1-MW operation, the day came to test the actual performance when the beam power was temporally ramped up to 1 MW for one hour towards the end of the accelerator operation in early July. The target team was delighted to confirm that the parameters monitoring the status such as target temperature and motor torque met exactly the expectations.

Meanwhile, later, during the summer maintenance, the team identified a potential damage of a flexible coupler for transferring motor rotation to the graphite disk. This cast a serious concern about the possibility of unexpected suspension of the target rotation due to breakdown of the coupler. The option of replacing the whole target system with a brand-new spare one was excluded to avoid the risk of delays in the beam delivery schedule. Based on the numerical simulations of the temperature and stress of still graphite disk exposed to a 500-kW proton beam, some measures were taken to minimize potential hazards expected in case of suspended target rotation. In particular, buffer tanks for exhaust gas (potentially contaminated by tritium emitted from the target) were installed behind the vacuum pump system connected to the proton beamline to prevent its direct emission to the environment (see Fig. 8).

Upon ensuring that these measures were in effect, the muon user program was resumed in the beginning of November after two weeks delay from the original schedule.

Feasibility of negative muon spin rotation demonstrated on D-line

Positive muons have a great advantage over negative muons for probing magnetic field in matter, as the spin polarization for the former remains much higher than the latter. However, it has been demonstrated that negative muons could be useful in studying hydrogen diffusion in magnesium hydride (MgH₂). The rotational motion of muon spins (the Larmor precession) monitored by muon decay into positrons/electrons tells the magnitude and distribution/fluctuation of internal fields that carries information on nearby atoms exerting magnetic fields to muons. In MgH₂, while the diffusion of hydrogen ions (exerting magnetic fields to muons) within the material should cause such fluctuation, the possibility of self-diffusion of positive muons as pseudo-hydrogen (that also leads to the fluctuation of the internal field) makes it difficult to discern the cause of fluctuation. By using negative muons, deeply bound to magnesium nuclei as “heavy electrons”, researchers succeeded in observing the field fluctuations that might be uniquely attributed to hydrogen diffusion (see Fig. 9). The result also proved that the disadvantage of low spin polarization for negative muons could be overcome by their unprecedented high flux achieved at the D-line under the 500-kW operation.

Construction of electric power substation for H-line in progress

Among the muon beamlines envisaged in the original plan of the MLF, the H-line in experimental hall No. 1 has been in the stage of waiting for funding from MEXT for years. Because of this situation, the J-PARC headquarters decided to provide partial support for putting the plan forward. It will finance primarily the construction of a new electric power substation to cover the huge demand for electricity expected after the H-line becomes fully operational. Following the installation
of cable racks, pitting of the MLF building wall, and outdoor structures in FY2017, the civil engineering work for the substation site near the MLF building continued (see Fig. 10). By the end of this fiscal year, the installation for the access to electricity also made some progress on the substation site.

Struggle for ultra-slow muons continued

Since the successful generation of ultra-slow muons (USMs) at MUSE in FY2015, experimenters had been working with untiring perseverance to improve the USM yields to the level needed for practical applications. However, they seemed still in the midst of a long crucial stretch throughout this year to gain enough vacuum-ultraviolet (VUV) laser power for the Mu ionization. The promise of a crystal vendor to deliver a high-quality ceramic crystal for the final laser amplifier has not been fulfilled yet, although we still hope that the vendor would manufacture a suitable crystal as soon as possible.

Technology Development Section

1. **Routine operation of the deuteration laboratory**

A deuteration laboratory, which has been set up on the first floor in the J-PARC research building, started its routine operation in this fiscal year. The laboratory consists of a biological deuteration room and a chemical deuteration room. Special wastewater treatment equipment for draining from biological and chemical deuteration rooms are belonging to the deuteration room. There is also emergency power supply for two days in full operation, which will be used in the case of power failure in the biological deuteration room, because the cultivation equipment usually operates for extended periods of time.

Firstly, we tested the individual equipment for deuteration work and below themes successfully performed by the J-PARC staffs and their collaborators in the biology deuteration laboratory.

1) Cultivation of green algae, which is the source of medium components used in culturing Escherichia coli (Photograph 1).
2) Cultivation of Escherichia coli (non-recombinant) using a deuterated medium.
3) Preparation of deuterated DNA samples.

Also, below themes successfully performed by the J-PARC staffs and their collaborators in the chemical deuteration laboratory.

1) Deuteration of ionic liquids and acrylic monomers (Photograph 2).
2) Chemical structure evaluation by LC-MS.
3) Preparation of deuterated polymer samples for neutron reflectivity measurement.

Statistics of the deuteration laboratory usage is shown in Table 1. It will be soon available for user.
2. Development of a high-durability chopper

The development of a high-durability T0 chopper was completed this fiscal year (Fig. 11). We defined it as a second generation T0 chopper of which our operation experience is reflected in the design. It has achieved a stable operation at 100 Hz and is expected to function maintenance free for 10 years. During the 2019 summer maintenance, this chopper will be installed at BL01, which is Fermi-chopper type inelastic neutron-scattering instrument and uses up to epithermal neutron.

As for the second generation of the high-speed disk chopper, we started a trial fabrication of a new disk, which should achieve sufficiently high mechanical strength and reliability for a 350-Hz operation, and will be made of laminated CFRP, mainly consideration of shape and adhesive of CFRP.
Neutrino Experiment

T2K run in the fiscal year 2018 continued seamlessly from the 2017 runs in the anti-neutrino mode, and ended on May 31, and entered to a long shut down for the water tank repair of the SuperKamiokande detector. History of the accumulated protons on target (POT) and the beam power are plotted in Fig. 1. Stable operation of 480-kW beam power was successfully achieved. Since the beginning of the experiment, T2K accumulated 1.65×10^{20} POT in the anti-neutrino mode, in addition to so-far accumulated 1.51×10^{20} POT in the neutrino mode.

In January 2019, T2K updated the neutrino oscillation results using all the data taken. With improved

23 Jan. 2010 – 31 May 2018
POT total: 3.16×10^{21}
v-mode: 1.51×10^{21} (47.83%)
\bar{v}-mode: 1.65×10^{21} (52.17%)

Fig. 1. History of accumulated POT and beam power since the beginning of T2K.
Hadron Experimental Facility

The Hadron Experimental Facility (HEF) of J-PARC is for fixed target particle and nuclear physics experiments with secondary hadron beams produced by the slowly extracted (SX) 30-GeV proton beam from the Main Ring (MR) accelerator. In FY2018, the SX beam operation for users was conducted with a beam power of 51 kW and a repetition cycle of 5.2 s in two periods; from June 1 to 30 for 517 hours and from February 9 to March 18 for 581 hours. The 51 kW is the maximum beam power allowed by the present hadron production target. The total integrated beam power delivered during the FY2018 operation was 2321 kW·days, which corresponds to the operation for full five years with the old KEK 12-GeV Proton Synchrotron stopped in 2005.

Construction of a new primary beam line for the high-momentum (high-p) beam and COMET (a μ-e conversion experiment) was in progress. A Lambertson magnet to separate a fraction of the main proton beam for the high-p beam has been installed in the switchyard tunnel together with other beam line elements (Fig. 3). In the Hadron Hall, a high-p beam line and an area for the experiment for vector meson production in Nuclei were being prepared.

A new hadron production target with gold was fabricated (Fig. 4) and is ready to install in FY2019. It is indirectly water-cooled from the both sides of the top and bottom and can accept proton beams of about 90 kW.

Fig. 2. Contours for νμ disappearance parameters sin²θ23 and Δm²32 (or Δm²13) with reactor constraint on sin²θ13.

Fig. 3. Photograph of the existing beam line (A-line) and a new beam line (B-line) in the Switch-yard tunnel from MR to Hadron Hall.
Strangeness/Hadron Physics Experiments

Several strangeness/hadron physics experiments were conducted.

At the K1.8BR beam line, an experiment for X-ray spectroscopy of $^3\!^4\!^\text{He}$ kaonic atoms (E62) took data in June. It measures isotope-shift of $3d-2p$ X-rays using an ultra-high resolution transition edge sensor (TES) detector of ~5eV (FWHM) resolution to study whether the kaon potential at the nuclei is deep or shallow. Another pilot measurement (E57) of X-rays from a kaonic hydrogen atom was in preparation for taking data in April 2019. By a comparison between the kaonic hydrogen and deuterium atoms, the experiment is aiming for disentangle the isospin 0 and 1 components of the $\overline{\text{KN}}$ interaction.

At K1.8, the Σ hyperon-proton scattering experiment (E40), which gives a key data to understand the origin of the repulsive core in nuclear force, started data-taking in June. Data on Σ^+p scattering were taken by March and data on Σ^-p scattering will be taken in FY2019.

Several results have been published in FY2018. A simplest kaonic nucleus system, the Kpp, was studied by the E15 experiment. The group showed a possible bound state in the system from the data taken in 2015 at K1.8BR.

A new double-Λ nucleus of a Be isotope was observed by the analysis of the emulsion experiment, E07, which was carried out in 2016 and 2017 at K1.8. The binding energy of the two Λ particles was determined for three possible scenarios that the nucleus is $^{10}\overline{\Lambda}\Lambda$Be, $^{11}\overline{\Lambda}\Lambda$Be, or $^{12}\overline{\Lambda}\Lambda$Be.

Kaon Decay Experiment

The KOTO experiment is designed to study the decay of a long-lived neutral kaon into a neutral π meson (π^0) and a pair of neutrinos. The detection of this decay is challenging, because only two photons from π^0 are observable. The decay mode has not been observed. This decay breaks the CP symmetry directly, and the branching fraction is theoretically well predicted in the SM as $(3.0 \pm 0.3) \times 10^{-11}$. By examining this ultra-rare decay, a new source of CP symmetry breaking that can explain the matter–antimatter asymmetry in the universe may be revealed.

In FY2018, KOTO continued the data acquisition as well as conducted the upgrade of the calorimeter readout. New results from the data collected in FY2015, improving the world’s best sensitivity by an order of magnitude, were published. In parallel, the analysis of the data collected in FY2016-2018 is ongoing intensively. These activities are described in details in the Research Highlights of this report.
The matter–antimatter asymmetry in the universe is one of the most mysterious puzzles in physics. The long history of the studies on charge and parity (CP) symmetry breaking in the quark sector, which started from the observation of the CP violation phenomena in neutral K mesons (kaon) in 1964, had established in the Standard Model (SM) how particles and antiparticles behave differently. However, it is known that CP violation in the SM alone cannot explain quantitatively the situation of the current universe, and other sources of CP violation must exist. One of the best probes to search for such new mechanisms is KL$^0 \rightarrow \pi^0 \nu\nu$, a CP-violating ultra-rare kaon decay. Its branching ratio is predicted precisely in the SM to be $(3.0 \pm 0.3) \times 10^{-11}$, and deviation from the prediction is directly related to the existence of a new contributor. Because of the extremely small branching ratio, the decay has not been observed.

KOTO (standing for “K0 at Tokai”) is a dedicated experiment to search for the KL$^0 \rightarrow \pi^0 \nu\nu$ decay at the Hadron Experimental Facility (HEF) of J-PARC. The international collaboration consists of 69 members from Japan, Korea, Russia, Taiwan, and USA. KOTO took the first physics data in 2013 for 100 hours and achieved a comparable sensitivity level to the world record [1]. KOTO resumed data taking in 2015 and continues accumulating physics data since then. In 2018, KOTO completed the analysis of the data recorded in 2015 and published the new result, as described in this article, which improved the world’s best sensitivity by an order of magnitude [2].

How to identify the KL$^0 \rightarrow \pi^0 \nu\nu$ decay signal? The signal is characterized as an event that consists of two photons from the π^0 decay in the final state and nothing else. Figure 5 shows a schematic view of the KOTO detector in 2015. A 30-GeV proton beam, extracted from the J-PARC Main Ring accelerator, hits a gold target at HEF and produces secondary particles. Neutral kaons (and other long-lived neutral particles such as photons and neutrons) are transported through beam collimators to the KOTO experimental apparatus, located 21 m downstream of the target. The KOTO detector in a large cylindrical vacuum tank surrounds the beam path and captures the daughter particles from kaon decays. An electromagnetic calorimeter, which is an array of 2716 undoped cesium iodide (CsI) crystals (labeled CSI in Fig. 5), measures the energies and positions of the photons. Other components of the detector are veto counters to detect any extra particles besides the two photons if they exist.

A key for the rare decay search is to suppress and control the background events that mimic the signal. For example, a KL$^0 \rightarrow 2\pi^0$ decay, whose branching ratio is...
8 orders of magnitude larger than $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$, can be recognized as a single π^0 event if two photons escape from being detected. It is essential to operate veto counters with extremely high efficiency. A neutron hitting the calorimeter and producing two photon-like activities can also fake a signal. Development of photon and neutron discrimination using the calorimeter information is indispensable to reduce this type of background.

Figure 6 shows the scatter plot of the events in the plane of the reconstructed π^0 transverse momentum (P_T) and π^0 decay vertex position (Z_{vtx}) with all the event selections imposed. The region inside the red polygon is the signal region. The black dots represent the observed events, and the color contour indicates the expected distribution of the $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ signal obtained by the Monte Carlo simulation. The black and red numbers indicate the numbers of observed and expected background events for each region surrounded by the lines, respectively. Consistency between these two numbers demonstrates that the background events are well understood. No candidate is observed inside the signal region, and KOTO set the upper limit on the branching ratio of the $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ decay as 3.0×10^{-9} at 90% confidence level. This improved the world’s best sensitivity for the search by an order of magnitude.

KOTO also updated the limit for $K^0_L \rightarrow \pi^0 X_0$ as 2.4×10^{-9}, where X_0 is an invisible boson with a mass of 135 MeV/c^2.

After the runs in 2015, KOTO conducted a major detector upgrade in early 2016. An additional barrel-shaped photon detector 3 m long in the beam direction and 1.9 m in the outer diameter, was installed inside the existing cylindrical photon veto counter. From 2016 to 2018, about 40% larger amount of data was collected than that in 2015 with the new detector configuration, i.e. more than twice better sensitivity is expected with the accumulated data in total. Intensive analysis of the data is ongoing, and the new result will come in 2019.

Following the runs in the spring season of 2018, KOTO performed a second major upgrade. To further suppress the neutron-induced background, the both-end readout scheme has been devised and implemented for the electromagnetic calorimeter. In addition to the existing photomultiplier attached at the rear end of each CsI crystal, thin photon sensors MPPCs (Multi-Pixel Photon Counter) have been newly installed at the front end. The idea is that the timing difference between two readouts can provide the depth information of shower development in the calorimeter, which is different in the electromagnetic case for photons and hadronic case for neutrons. KOTO completed the upgrade and resumed data collection in February 2019.

References
The Cryogenics Section supports scientific activities in applied superconductivity and cryogenic engineering, carried out at J-PARC. It also supplies cryogen of liquid helium and liquid nitrogen. The support work includes maintenance and operation of the superconducting magnet systems for the neutrino beamline, for the muon beamline at the Materials and Life Science Experimental Facility (MLF) and construction of the magnet systems at the Hadron Experimental Facility (HEF). It also actively conducts R&D works for future projects at J-PARC.
Cryogen Supply and Technical Support

The Cryogenics Section provides liquid helium cryogen for physics experiments at J-PARC. The used helium is recycled by the helium gas recovery facility at the Cryogenics Section. Figure 1 summarizes the liquid helium supply in FY2018.

Liquid nitrogen was also supplied to the users for their convenience. Its amount in FY2018 is summarized in Fig. 2. Liquid nitrogen has been regularly provided to the Radiation Safety Section for operation of a gas chromatograph. It was also supplied to the users in the MLF and the HEF.

![Fig. 1. Liquid helium supply at J-PARC from April 2018, to March 2019.](image1)

![Fig. 2. Liquid nitrogen supply at J-PARC from April 2018, to March 2019.](image2)

Superconducting Magnet System for T2K

The superconducting magnet system for the T2K experiment operated during the periods shown in Table 1. The system worked well without disturbing the beam time. The operation time was short and regular maintenances were carried out in the summer. Figure 3 summarizes the incidents in the refrigeration system from FY2009. The system was suspended only in its early period due to problems in the hardware and control parameters. After FY2012, no refrigerator suspension occurred, except for accidental power outage. Recently, the system has been very stable. Although a few problems with hardware parts occur every year, the troubles have been resolved without interrupting the operation.

![Table 1. Operation history of the T2K superconducting magnet system.](table1)

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Operation</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Apr.</td>
<td>2/28-6/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jul.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sep.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Jan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feb.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mar.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Superconducting Magnet Systems at the MLF

The Cryogenic Section contributes to the operation and maintenance of the superconducting magnet systems at the Muon Science Facility (MUSE) in the MLF. The superconducting solenoid in the Decay Muon Line (D-line) was operated from January to the end of June 2018. After the annual maintenance in the summer shutdown from July to September, it was restarted on October 15. It was stopped on December 21 for the New Year holidays and resumed on January 15. No serious problem was found in the cryogenic system for D-line magnets in FY2018. In July and September 2018, two superconducting solenoid magnets were cooled down and tested. It took about two weeks for both magnets to cool down to 4 K, and they were successfully ramped up to a current of 187 A, corresponding to 105% of the nominal current of 178.5 A. These magnets will be installed in the High Momentum Muon Line (H-line) soon.

Superconducting Magnet Systems at the HEF

The COMET experiment is under construction in the Hadron South Experimental Hall (HDS) of the Hadron Experimental Facility (HEF). The Cryogenics Section was involved in the construction of the cryogenic system and superconducting magnets. Production of the superconducting solenoid magnet using radiation-resistant materials is in progress for the muon source. The detailed design of the cryostat of the Pion Capture Solenoid was improved.

The magnets are designed to be cooled by a two-phase flow of liquid helium which is supplied by a helium refrigeration system built in HDS. The cooling capacity of the helium refrigerator has been measured to be 140 W at 4.5 K in the case of 500 W heat load on shield gas. Currently, a lead system which includes helium distribution is under development.

The transfer line from the current lead system to the Muon Transport Solenoid (MTS) was fabricated and installed in the HDS in FY2018. It has four cooling pipes and four bundles of superconducting wires which are cooled down by thermal conduction from a 4-K pipe. Before the fabrication, we performed cooldown tests with a short cut model of the transfer line to optimize the thermal contacts to bundles of superconducting wires. It was found that each bundle of 3 wires had to be surrounded by a thin Indium sheet and the thermal anchor blocks needed additional pure aluminum at the contacts to cool down properly all superconducting wires. It was clarified from the tests that all 12 wires reached a temperature less than 4.6 K. Figure 4 shows a thermal anchor blocks for 4 bundles fabricated in the factory. At the end of the installation, the superconducting wires were soldered with the lead wires to the protection diodes of the MTS, as shown in Fig. 5.
R&D for the Future Projects at J-PARC

The g-2/EDM project aims for the precise measurement of the anomalous magnetic moment and the electric dipole moment of muons. This experiment was proposed at the MUSE H-Line. A superconducting solenoid with a high field homogeneity, better than 1 ppm locally, plays a very important role as a muon storage ring. In 2018, the design study focused on the kicker coil. The shielding effect of transient field of the kicker coil due to SUS chamber was calculated in detail and the chamber size was increased to reduce the shielding effect.

A muonium hyperfine structure measurement, called MuSEUM experiment, has been proposed for the same beam line as the g-2/EDM project. In the experiment, the energy state transition in muonium will be observed under a static magnetic field with local homogeneity of 1 ppm. A standard NMR probe to determine the absolute magnetic field is being developed to calibrate other probes. Cross calibration tests in the collaborative framework between the USA and Japan have been in progress since 2017. The comparison between the US probe and the newly developed KEK probe was carried out at the Argonne National Laboratory (ANL) in January and February 2019, as shown in Fig. 6. The data analysis is in progress, and the discussion will take place in J-PARC in September 2019.

HTS Maglev Coaster for Demonstration

Cryogenics Section conducted constructing superconducting magnetic levitation coasters for public relations and for educational lessons to demonstrate cryogenics with the ReBCO high-temperature superconductor. For easy treatment and safety, a long track rail made of rubber magnet ribbon has been utilized recently, instead of Neodymium magnets. The lightweight superconducting coaster is fabricated with a ReBCO tape coated conductor to achieve enough levitation and pinning on the weak magnet track.
Information System

Overview

The Information System Section plans, designs, manages and operates the network infrastructure of J-PARC and also provides support to ensure its information security. In terms of computing, until now, J-PARC has owed its major computer resource for analyzing and storing data from neutrinos, nuclear physics and MLF experiments to the KEK central computer system. The section connects the J-PARC network to the KEK central computing system directory and helps the users to utilize the system effectively.

Status of Networking

Since 2002, the J-PARC network infrastructure, called JLAN, has been operated independently from KEK LAN and JAEA LAN in terms of logical structure and operational policy. In 2018, the total number of hosts (servers and PCs) on JLAN exceeded 5,000 and the number has increased by 106% from the last year. The growth curve of edge switches, wireless LAN access points and hosts connected to JLAN are shown in Figure 1.
In April 2016, the National Institute of Informatics (NII) upgraded SINET (Japan Science Information Network https://www.sinet.ad.jp) from version 4 to 5. SINET is not only a gateway from JLAN to the internet but also an important connection between Tokai and KEK Tsukuba site in J-PARC.

Figures 2 and 3 show the network utilization of the internet from/to JLAN. Since the bandwidth capacity for the internet through the SINET is 10 Gigabits per second (Gbps), it is clear that there is enough space for additional activity. Figures 4 and 5 show the statistics of data transfer between the Tokai site and the Tsukuba site. The network bandwidth capacity between the two sites is 10 Gbps. This shows the usage level has been approaching a half of it, especially during the period when the Hadron facility was running. In addition to the current bandwidth, the upgrade offers a future option of 20 Gbps for both of internet and Tokai-Tsukuba connections, if J-PARC network can be adapted.

Fig. 1. Number of hosts, edge SW and wireless AP on JLAN

Fig. 2. Network traffic from JLAN to the internet (1 hour average and 5 minutes peak value).

Fig. 3. Network traffic from the internet to JLAN
Since 2009, J-PARC has offered a Guest network (GWLAN) service, which is a wireless internet connection service for short-term visitors, available in almost all J-PARC buildings. In the end of 2014, additional network service called User LAN has started. In using the GWLAN, users are required to receive a password at the J-PARC Users Office beforehand, while in the User LAN users are authenticated by the same ID and password for the User Support System, which is also used for dormitory reservation or so on. From March 2016, a new service called “eduroam” has been started. The eduroam (https://www.eduroam.org/) is a secure roaming access service developed for the international research and education community and mutually used among a huge number of research institutes, universities and other institutions around the world. The eduroam service will be a convenient third option of internet connection service for J-PARC visitors. Figure 7 shows this FY usage statistics of GWLAN, User LAN and the newly introduced eduroam service.
Status of Computing

J-PARC does not have computing resources for physics analysis, so since 2009, the KEK central computing system (KEKCC) at the KEK Tsukuba campus has been mainly used. At the Neutrino (T2K), Hadron and Neutron (MLF) experiments, the data taken in J-PARC are temporarily saved at their facilities and then promptly transferred, stored and analyzed at the system in Tsukuba. The storage of the system is also be utilized as a permanent data archive for their data.

The second upgrade of the system was completed in 2016, and the computing resources assigned to J-PARC are shown in Table 1. Figures 8-10 show the utilization statistics of the computing resources in 2018. The main users who used the CPU and storage constantly were from the Hadron experiment (KOTO) and Neutrino groups. The MLF group also started to store data to tapes on the system.

Table 1. Assigned computing resources to J-PARC activities in the KEKCC

<table>
<thead>
<tr>
<th>Resource</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Intel Xeon E5-2697v3)</td>
<td>4700 cores</td>
</tr>
<tr>
<td>RAID Disk (GPFS)</td>
<td>4.5 Peta Bytes</td>
</tr>
<tr>
<td>Tape (HSM)</td>
<td>27 Peta Bytes</td>
</tr>
</tbody>
</table>

Fig. 7. Usage trends of GWLAN, User LAN and eduroam.

Fig. 8. CPU usage statistics (the yellow line shows resource assignment for J-PARC)
Fig. 9. Disk usage statistics (Left: trend of this FY year; Right: annual trend)

Fig. 10. Tape library usage statistics (Left: trend of this FY year; Right: annual trend)
Transmutation Studies

Overview

We have been working on R&D for developing nuclear transmutation technology with accelerator-driven systems (ADS) using the J-PARC’s research resources and expertise on high-power accelerator and target technologies. The ADS is an effective nuclear system for volume reduction and mitigation of harmfulness of high-level radioactive waste.

Nearly 20 years ago, we proposed the concept of an experimental facility, Transmutation Experimental Facility (TEF), for development of ADS. TEF consists of two individual facilities; the ADS Target Test Facility (TEF-T) for irradiation of beam window materials, which is required for development of high-power lead-bismuth eutectic (LBE) targets, and the Transmutation Physics Experimental Facility (TEF-P) for reactor physics study for proton beam driven subcritical cores with bearing minor actinide fuels. A technical design report for TEF-T (JAEA-Technology 2017-003, 539 pages) and a safety design report for TEF-P (JAEA-Technology 2017-033, 383 pages) have been published. In 2018, the design report for TEF-T was further reinforced and translated into English. Owing to these efforts, we believe that the basic design of TEF-T and TEF-P has been completed.

In 2018, we have started reorienting the concept of the experimental facility to make it more attractive and effective by introducing leading edge knowledge to its purpose and specifications. The main purpose of the new facility is the same as TEF-T, that is, irradiation...
of beam window materials of ADS by impinging the proton beam to the LBE target. In addition, since there is a strong demand to irradiate beam window and target materials at J-PARC's existing experimental facilities, the new facility is equipped with a space in front of the LBE target to irradiate various sample materials by the proton beam. Thus, the new facility is a proton irradiation facility.

The idea of TEF-T is to irradiate sample materials at TEF-T, and once they are irradiated, the materials are transported to JAEA's hot-labo facilities for post-irradiation examination (PIE). However, this method is inefficient because of the problems with transportation of radioactive materials, and the JAEA's hot-labo facilities are rather old. Hence, the new facility is furnished with a hot-labo. The hot-labo can be used for PIE for irradiated materials in both the new facility and the existing J-PARC's experimental facilities. Accordingly, the new facility can contribute not only to the development of ADS but also to upgrading the J-PARC's existing facilities.

We have continued our R&D activities to support the design of the experimental facility and ADS. We are developing the LBE target technologies on the topics of thermal-hydraulics, materials corrosion, instrumentation including oxygen concentration control, acquiring operation experience by mainly using two large LBE circulation loops, etc. We are continuing the measurement of nuclide production and displacement cross sections, and the development of proton beam monitors, which can withstand a high-power proton beam. We are also continuing reactor physics experiments by using critical assemblies. Details of these R&D activities are described in this chapter. In 2018, we launched an R&D activity to develop superconducting linac for ADS with the full cooperation of J-PARC's accelerator team.

On February 14 and 15, 2019, the fourth TEF Technical Advisory Committee (T-TAC), which was one of the technical advisory committees under the J-PARC International Advisory Committee, was held (Fig. 1). The T-TAC encouraged our efforts for the reorientation of the facility as "The proposed approach builds on J-PARC's strong expertise in the field of accelerator and target technologies and addresses a scope that encompasses not only the ADS mission but also other high-power accelerator applications. T-TAC finds that the proposed applications are sound and technically feasible."

Fig. 1. T-TAC members and attendees.
Research and development

Studies for proton irradiation facility

The experimental studies to establish the proton irradiation facility for ADS development have been progressing. In the LBE loop experiment, the operation for steady state and transient experiments has been performed by using IMMORTAL (Integrated Multi-functional MOckup for TEF-T Real-scale TArget loop). Regarding the target materials, conditioning operation and functional tests of OLLOCHI (Oxygen-controlled LBE LOop Corrosion tests in High-temperature) started. In the area of instrument developments, the manufacturing of oxygen sensors and the development of a freeze-seal type valve (FV) are progressing as a key instrumentation technology for the LBE loop system. Development of remote handling technology for target maintenance has been advancing. The results are described in detail below.

IMMORTAL

To acquire verification and validation (V&V) data for the safety analysis code, we performed steady state and transient experiments by using IMMORTAL.

A simulation test for accidental beam over power condition under a constant flowrate operation was performed. To simulate the beam over power condition, the output of the Main Heater (MH) was changed in the range from the initial state (100%, 57 kW) to 118% at the maximum. The flowrate of the primary (LBE) system and the secondary (pressurized water) system were 46 liter/min and 60 liter/min, respectively. As a result, it was confirmed that the temperature of each system rose up simultaneously. There was no significant change in the temperature difference compared with the initial conditions. Further, the heat transfer performance of a primary heat exchanger (HX) was preliminarily verified by the results of several non-isothermal operation tests. However, since the verification was based on a limited amount of experimental data, we will continue the experiments to accumulate more experimental data contributing to the verification and validation of the safety analysis code.

OLLOCHI

Before the corrosion test in OLLOCHI, the conditioning operation and the functional tests of the components were carried out. The electro-magnetic flowmeters (EMFs) were calibrated at 400˚C. As a functional test for the main heaters and the cooler, non-isothermal operations were performed at 450˚C with temperature difference of 100˚C. From the results, we obtained the correlation between the inlet valve lift of the air cooler and the temperature difference.

The dissolved oxygen concentration (OC) control tests started in January 2019. We managed to maintain manually the oxygen concentration within a certain range by mixing of the inlet gases. The control tests will be continued to obtain loop-specific parameters necessary for the automatic control of OC.

Oxygen concentration (OC) control tests

In order to control OC in LBE automatically, oxidizing gas or reducing gas is temporarily added to the cover gas phase when the oxygen sensor output
crosses the setting thresholds. As a result of demonstration experiment, OC was kept at a target value (0.98 V) constant under stagnant LBE condition using an oxygen sensor calibration system (Fig. 4). By applying the same control scheme to the LBE loops, we will start an automatic control test under the LBE flow condition in FY2019.

Freeze-seal valve development

Freeze-seal valve (FV) is under development to add passive safety function to the LBE spallation target loop. By applying FV to the LBE loop, we can minimize the slow leak of LBE due to (1) sticking small chemical compounds into the seal of the mechanical valve, (2) accidents, such as station blackouts. LBE in FV melts by their own latent heat and LBE will be drained out automatically. However, LBE shows re-crystallization with volumetric expansion after solidification and that will generate stress in the FV. To mitigate the generated stress inside the FV piping, the hoop and axial stress for the stainless-steel container with LBE was measured by using apparatuses shown in Fig. 5. As a result, it was found that annealing at 50-80°C was the most effective to reduce the stress. Cooling rate dependence was not observed in the stress. The stresses were lower than the allowable stress of SS304.

Remote handling technology

Throughout the annual operation, the target vessel will be damaged from the bombardment by the pulsed proton beam and will be highly activated. It is essential, therefore, to develop remote exchanging technology for the target vessel. We have been evaluating the applicability of target exchange technology by remote cutting / welding of the loop piping. A prototypical remote jig to assist works has been improved. The operability of the revised jig was improved by adding new concepts, such as a simultaneous mounting structure of a commercial pipe cutter and a welding machine. Further, we adopted radiation testing as a candidate inspection method after welding. We will perform demonstration tests to establish a series of remote works for the exchanging of the target vessel by using these improved jigs shown in Fig. 6.

Displacement cross section measurement

As an index of radiation damage of materials, displacement per atom (DPA) is widely used in many fields, such as fission and fusion reactors, and accelerator facilities. The DPA can be estimated by integrating a particle flux by the displacement cross section. Since the experimental displacement cross section data were scarce for protons with energy higher than 20 MeV, the experiment was conducted in J-PARC. The displacement cross section could be delivered from an electric resistivity increase of a sample by proton irradiation. To prevent the defect from recovering by the thermal motion of atoms, the sample was cooled to about 4 K by using a cryocooler. In Fig. 7, the present result of the displacement cross section of copper for 3-GeV proton is compared with the experimental data carried out in the...
lower energy region and the calculation. The present data showed overestimation of about 4 times the calculation with Norgert-Robinson-Torrens (NRT) model, which is widely utilized to obtain the displacement cross section. It was also shown that the PHITS with the improved model with athermal recombination correction model based on Nordlund parameter showed remarkably good agreement with the experimental data. By accumulation of experimental data in future work, the accuracy of the radiation damage calculation is expected to be improved.

Improvement of the spallation model

The particle transport simulation plays an important role in the neutronic and shielding design of high-energy accelerator facilities and accelerator-driven nuclear transmutation systems. In the particle transport simulation at energies above several tens of mega-electron volts, a nuclear reaction model provides information about secondary particles and the spallation products produced from the spallation reactions.

As illustrated in Fig. 8, the spallation reaction is divided into two processes according to their dynamical time scales and mechanisms: the intranuclear cascade process and deexcitation process. In the first process, protons and neutrons that consist of a nucleus repeatedly collide with one another and emit from the target nucleus. Because the residual nucleus just after the first process is in highly excited state, it becomes stable in the subsequent process by emitting energetic particles. For heavy targets such as lead and mercury, a nuclear fission may occur competing with the particle emission.

In our study, to improve the predictive capability of spallation product yields, particularly produced from the nuclear fission, a description of the fission probability in the spallation model was proposed [1]. Figure 9 shows the fission cross-sections of ^{208}Pb, ^{209}Bi, and ^{181}Ta calculated with the conventional and our proposed models. Comparing with experimental data for heavy nuclei showed that our proposed model can provide a unified prediction of the proton- and neutron-induced fission cross sections with markedly improved accuracy. In future work, the proposed model is expected to be
utilized in designing the accelerator-driven system for nuclear transmutation and its experimental facility at J-PARC.

MA transmutation experiments

ADS feasibility studies have been conducted at several experimental facilities of reactor physics, including the MASRUCA reactor (France), the YALINA booster (Belarus), the VENUS-F facility (Belgium), and the KUCA at Kyoto University (Japan). The Transmutation Experimental Facility (TEF) and the Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA) have been planned to construct functional experimental facilities for implementation of nuclear transmutation of MA by ADS. ADS incorporates an innovative system of safety whereby a reactor is operated at a subcritical state, with the combined use of a high-energy proton accelerator and a fast spectrum reactor core. Subcritical irradiation of MA by ADS with a critical assembly even at zero power is a very important step, before operating actual ADS facilities.

Using the KUCA facility, as shown in Fig. 10, the first significant attempt was made to demonstrate the principle of nuclear transmutation of MA by ADS through the injection of high-energy neutrons into the uranium fueled core at a subcritical state. The main objective of this experiments is to confirm fission reactions of neptunium-237 (237Np) and americium-241 (241Am), and capture reactions of 237Np. Subcritical irradiation of 237Np and 241Am foils is conducted in a hard spectrum core with the use of the back-to-back fission chamber that obtains simultaneously two signals from specially installed test (237Np or 241Am) and reference (uranium-235) foils. Figure 11 shows an example of experimental results: the pulsed heights as the horizontal axis correspond to the kinetic energy of fission fragments in 237Np and 235U fission events.

The first nuclear transmutation of 237Np and 241Am by ADS soundly implemented by combining the subcritical core and the 100 MeV proton accelerator, and the use of a lead-bismuth target, is conclusively demonstrated through the experimental results of fission and capture reaction events [2].

![Fig. 10. Photograph of the solid moderated core of the KUCA facility.](image)

![Fig. 11. An example of experimental results (Pulsed heights of 237Np and 235U fission reaction rates at subcritical state) [2].](image)

References

Safety
1. Major events on safety culture and safety activities at the J-PARC Center

The major events on safety culture and safety activities at the J-PARC Center are listed in Table 1.

Every year since 2014, the J-PARC Center holds workshop 5.23 for fostering safety culture to keep fresh the lessons of the radioactive material leak incident at the Hadron Experimental Facility on May 23, 2013. A “Safety Day” was launched last year, which, in addition to workshop 5.23, also includes a discussion of the safety culture. The safety day took place on May 25.

In the morning, we held a meeting between the sections to exchange information on the safety efforts. The number of participants was 106. The director of the J-PARC Center gave away three “Safety Awards for good examples”. The hadron section received one because they reported more good examples of safety in their daily works than the other sections. The other two were given to the neutron science section/technology development section/CROSS and accelerator section 1, because they reported excellent good examples.

Dr. Yoshimi Kasugai from the radiation safety section gave a scientific talk with the title “Where will the tritium generated in mercury via the spallation reaction be transferred?”. Dr. Hiroshi Takada from the neutron source section introduced the safety work of the MLF facility under the title “Example of tritium emission control at the time of mercury target container exchange work”. Also, Dr. Yoshinori Kurimoto from accelerator section 5 introduced the safety work of the accelerator facility under the title “Safety measures for the capacitor bank for main electromagnet power at the main ring – fuse wire melting trial and operation”.

In the afternoon part of the Safety Day, workshop 5.23 for fostering safety culture was held at the auditorium of the Nuclear Science Research Institute with 284 attendees. Mr. Haruyasu Hoshino, project manager of the safety and health promotion division of Toyota Motor Corporation was invited this year; he spoke about a safety response and safety culture construction at the time of automation of work at Toyota.

The emergency drill was carried out on September 6. It was assumed that a big fire occurred in the Linac accelerator tunnel during a summer shutdown. The main purpose of the drill this year was to practice the response when an early attempt to extinguish the fire has failed.

The J-PARC Safety Audit in FY2018 was conducted by two external auditors (Prof. Akira Tose from Niigata University and Dr. Katsumi Hayashi from the Institution of Professional Engineers) on November 20-21. They reviewed mainly five points: safety control of work, introduction of “the business improvement pertaining to prevention of radiation hazards”, effectiveness and review of the radiation safety education, notification of abnormal and emergency, activities for fostering safety culture. They suggested to put “stop oneself” in the idea of “stop work”. They also pointed out that a culture to think and operate by ourselves was important.

2. Radiological license update and facility inspection

Applications to update the radiological license were submitted to the Nuclear Regulation Authority on July 9 and November 21. The major application items are listed in Table 2. The permits for the applications were issued on August 22 and on February 4, 2018, respectively. There were no cases requiring a facility inspection in FY2018.

3. Meeting of the committee on the radiation safety matter

The basic policies on radiation safety in the J-PARC are supposed to be discussed by the J-PARC Radiation Safety Committee (RSC). Meanwhile, the J-PARC Radiation Safety Review Committee (RSRC) is expected to discuss specific subjects of radiation safety in the J-PARC. The RSC meetings were held twice and those of the RSRC, three times. The major issues are summarized in Table 3.

4. Radiation exposure of radiation workers

In FY2018, 3342 persons were registered as
radiation workers. In these five years the number of workers fluctuated between 3000 and 3500, except for FY2014 when many contractors took part in the construction work of the hadron south experimental-hall, located in the radiation-controlled area of the Hadron Experimental facility.

The distribution of annual exposed doses is summarized in Table 4 for each category of workers: in-house staff, users and contractors. The exposed doses of gamma-rays and of neutrons were measured with an optically stimulated luminescence (OSL) dosimeter and with a plastic solid-state track detector, respectively. All users and almost in-house staff and contractors were exposed less than detection limit (Not Detected, expressed as "ND" in the table). The maximum exposed dose was 0.9 mSv. Though it was less than the administrative dose limit at the J-PARC (7 mSv/year), we should continue to make an effort to reduce the exposed doses of all workers.

Table 1. List of major events on safety in FY2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>May 25</td>
<td>Safety Day (Meeting to exchange safety information between all sections, Workshop for fostering safety culture)</td>
</tr>
<tr>
<td></td>
<td>July 29</td>
<td>Liaison committee on safety and health for contractors</td>
</tr>
<tr>
<td></td>
<td>Sep. 27, Oct. 3, 31 Nov. 2, 29</td>
<td>Refresher course on radiation safety for in-house staff</td>
</tr>
<tr>
<td></td>
<td>Sep. 6</td>
<td>Emergency drill assuming a big fire in the Linac accelerator tunnel during a summer shutdown.</td>
</tr>
<tr>
<td></td>
<td>Nov. 20 - 21</td>
<td>FY2018 J-PARC Safety Audit</td>
</tr>
<tr>
<td>2019</td>
<td>Jan. 24 - 25</td>
<td>6th Symposium on Safety in Accelerator Facilities</td>
</tr>
</tbody>
</table>

Table 2. Major application items of the radiological license

<table>
<thead>
<tr>
<th>Facility</th>
<th>Items of an application</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCS</td>
<td>• Addition of samples for the proton beam irradiation experiment</td>
</tr>
<tr>
<td>MLF</td>
<td>• Change of material of the radiation shielding in the M2 beam line</td>
</tr>
<tr>
<td></td>
<td>• Addition of description concerning maintenance work in the U-line</td>
</tr>
<tr>
<td></td>
<td>• Addition of sealed radioisotopes</td>
</tr>
<tr>
<td></td>
<td>• Reduction of a storage facility for induced radioactive materials</td>
</tr>
<tr>
<td>HD</td>
<td>• Beam intensity: $4.0 \times 10^{16} \rightarrow 4.3 \times 10^{16}$ protons/hour</td>
</tr>
<tr>
<td>NU</td>
<td>• Addition of disposal method of radioactive liquid waste in the second utility building</td>
</tr>
<tr>
<td></td>
<td>• Change in the concentration assessment in the exhaust of radioactive gaseous waste generated inside a helium vessel</td>
</tr>
<tr>
<td>All</td>
<td>• Optimization of the application document</td>
</tr>
</tbody>
</table>
Table 3. Radiation Safety Committee (RSC) and Radiation Safety Review Committee (RSRC) in FY2018

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Major Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The Radiation Safety Committee</td>
</tr>
</tbody>
</table>
| 30th| 28th May 2018 | • Report of radiation exposure status in FY2017
• Policy on the radiological license update for the MLF, the HD and the Neutrino facilities
• Report of deliberation status of revision proposal of the Local Radiation Protection Rule for J-PARC |
| 31st| 2nd Oct. 2018 | • Policy on the revision of organizational structure for radiation safety management |
| 32nd| 27th Dec. 2018 | • Report about the RSC
• Report of revision of the Local Radiation Protection Rule for J-PARC |
| 33rd| 28th Mar. 2019 | • Deliberation about the role of the RSC
• Policy on the radiological license update in FY2019
• Report about the deliberation in RSRC |
| | | The Radiation Safety Review Committee |
| 19th| 11th May 2018 | • Update of the radiological license for the MLF, the HD and the Neutrino facilities |
| 20th| 3rd Jul. 2018 | • Report of radiation exposure status in FY2017
• Revision proposal of the Local Radiation Protection Rule for J-PARC |
| 21st| 10th Sep. 2018 | • Revision of the radiological license update for the RCS and the MLF facilities
• Report of a hearing by the secretariat of the Nuclear Regulation Authority about a revision proposal of the Local Radiation Protection Rule for J-PARC |
| 22nd| 17th Dec. 2018 | • Revision of the Local Radiation Protection Rule for J-PARC
• Revision of the Detailed Rule of Local Radiation Protection Rule for J-PARC
• Revision of the Transportation Rule for Radioactive Materials in J-PARC Site |
| 23rd| 20th Mar. 2019 | • Update of the radiological license for the Linac, the RCS, the MR and the MLF facilities
• Use of the X-ray generator at the JRB and the MLF facilities |

Table 4. Annual exposed doses in FY2018

<table>
<thead>
<tr>
<th></th>
<th># of workers</th>
<th>Dose range x (mSv)</th>
<th>Collective dose (person mSv)</th>
<th>Maximum dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ND 0.1≤ x ≤1.0 1.0< x ≤5.0 5.0< x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-house staff</td>
<td>696</td>
<td>661 35 0 0</td>
<td>11.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Users</td>
<td>1,296</td>
<td>1,296 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Contractors</td>
<td>1,365</td>
<td>1,303 62 0 0</td>
<td>16.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>3,342</td>
<td>3,245 97 0 0</td>
<td>27.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>
User Service
Users Office (UO)

Outline

The J-PARC Users Office (UO) was established in 2007. It opened an office on the first floor of the IBARA-KI Quantum Beam Research Center in Tokai-mura, in December 2008. UO maintains the Tokai Dormitory for the J-PARC users. UO provides on-site and WEB support with one-stop service for the utilization of the J-PARC. As of March 31, 2018, UO had 14 staffs and 4 WEB Support SE staffs in the Users Affairs Section. The J-PARC Users, after the approval of their experiment, follow the administrative procedures outlined on the Users Office (UO) WEB Portal Site, related to the registration as a J-PARC User, radiation worker registration, safety education, accommodation, invitation letter for visa and other requirements. Then, the UO staffs provide them with support by e-mail. After their arrival in the J-PARC, UO gives on-site assistance to the J-PARC Users, like receiving the J-PARC ID, glass badge, and safety education. Since 2015, UO had been doing its part to improve the J-PARC on-line experiment system and make it more user-friendly.

Members of Users Affairs Section including UO staffs

1st row, left to right KIMURA Rie, KOYA Michiyo, ISHIKAWA Tomoko, KATOGI Aki, HOSHINO Junko, OIKAWA Kota, SOMEYA Mie.
2nd, left to right ENDO Maya, SANAO Ai, WAKU Satoshi, HASEGAWA Shigeo, NAMIKI Shinji.
3rd, ISOZAKI Mari, ISHIKAWA Taeko, OKUKI Rika, HANAWA Masahiro, MAEDA Kenji, HAGIWARA Tomonori, AIZAWA Yusuke.
Activities of UO

J-PARC Users

J-PARC Users Office

- Technical support
- Technical contact person
- Research Proposal
- Proposal Advisory Committee

Procedures for J-PARC site access
- ID card
- Portal site
- Rental goods

Support for J-PARC Utilization
- User room
- Radiation/Facility safety education

Support Service for Daily Life
- Accomodation
- Rent-a-car
- Living information

One stop service for J-PARC users

on the web

Step 1
- User registration
 - New user
 - Registered user
- Getting user ID
- Annual registration, specifying of the visit
- Approval of UO

Step 2-1
- Obligatory application
 - Application form to visit J-PARC
 - Visit proposal (foreign nationality)
 - Reservation of safety training
 - On-line education video

Step 2-2
- Optional application
 - J-PARC Card for facility access
 - Radiation worker registration
 - Network registration
 - Reservation of Dormitory
 - Invitation letter for Visa

on-site support

Step 3
- Procedures upon arrival at the first day
 - Receive J-Parc User ID card
 - Vehicle Permission pass
 - Safety education and dosimeter

Step 4
- J-PARC Experiment and meeting
 - Rental goods
 - Bicycle
 - PHS
 - Cafeteria card
 - Locker key
 - Office key

Step 5
- Leaving procedures
 - Return all cards, keys, rental goods UO (office hours) or return box!
User Statistics

Users in 2018 (Japanese/Foreigners, person-days)

Users in 2018 (according to facilities, person-days)

Users in 2018 (according to organizations, person-days)
MLF Proposals Summary - FY2018

Table 1. Breakdown of Proposals Numbers for the 2018 Rounds

<table>
<thead>
<tr>
<th>Beamline</th>
<th>Instrument</th>
<th>2018A</th>
<th>2018B</th>
<th>Full Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Submitted</td>
<td>Approved</td>
<td>Submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GU</td>
<td>GU</td>
<td>GU</td>
</tr>
<tr>
<td>BL01</td>
<td>4D-Space Access Neutron Spectrometer - 4SEASONS</td>
<td>18(0)</td>
<td>10(0)</td>
<td>18(0)</td>
</tr>
<tr>
<td>BL02</td>
<td>Biomolecular Dynamics Spectrometer - DNA</td>
<td>14(1)</td>
<td>12(1)</td>
<td>25(2)</td>
</tr>
<tr>
<td>BL03</td>
<td>Ibaraki Biological Crystal Diffractometer - iBIX</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100-β)†</td>
<td>(β)‡</td>
<td>0</td>
</tr>
<tr>
<td>BL04</td>
<td>Accurate Neutron-Nucleus Reaction Measurement Instrument - ANNRI</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>BL05</td>
<td>Neutron Optics and Physics - NOP</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>BL06</td>
<td>Neutron Resonance Spin Echo Spectrometers - VINO ROSE</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>BL08</td>
<td>Special High Resolution Powder Diffractometer - S-HRPD</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>BL09</td>
<td>Neutron Beamline for Observation and Research Use - NOBORU</td>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>BL11</td>
<td>High-Pressure Neutron Diffractometer - PLANET</td>
<td>9(0)</td>
<td>7(0)</td>
<td>7(0)</td>
</tr>
<tr>
<td>BL12</td>
<td>High Resolution Chopper Spectrometer - HRC</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>BL14</td>
<td>Cold-neutron Disk-chopper Spectrometer - AMATERAS</td>
<td>34</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>BL15</td>
<td>Small and Wide Angle Neutron Scattering Instrument - TAIKAN</td>
<td>34(3)</td>
<td>17(3)</td>
<td>36(3)</td>
</tr>
<tr>
<td>BL16</td>
<td>High-Performance Neutron Reflectometer with a horizontal Sample Geometry - SOFIA</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>BL17</td>
<td>Polarized Neutron Reflectometer - SHARAKU</td>
<td>16(0)</td>
<td>11(0)</td>
<td>20(1)</td>
</tr>
<tr>
<td>BL18</td>
<td>Extreme Environment Single Crystal Neutron Diffractometer - SENJU</td>
<td>24(0)</td>
<td>12(0)</td>
<td>18(0)</td>
</tr>
<tr>
<td>BL19</td>
<td>Engineering Diffractometer - TAKUMI</td>
<td>20</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>BL20</td>
<td>Ibaraki Materials Design Diffractometer - IMATERIA</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100-β)†</td>
<td>(β)‡</td>
<td>31</td>
</tr>
<tr>
<td>BL21</td>
<td>High Intensity Total Diffractometer - NOVA</td>
<td>15</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>BL22</td>
<td>Energy Resolved Neutron Imaging System - RADEN</td>
<td>13(1)</td>
<td>12(1)</td>
<td>20(2)</td>
</tr>
<tr>
<td>BL23</td>
<td>Polarization Analysis Neutron Spectrometer - POLANO</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D1</td>
<td>Muon Spectrometer for Materials and Life Science Experiments - D1</td>
<td>9(1)</td>
<td>6(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>D2</td>
<td>Muon Spectrometer for Basic Science Experiments - D2</td>
<td>8(0)</td>
<td>6(0)</td>
<td>9(0)</td>
</tr>
<tr>
<td>S1</td>
<td>General purpose μSR spectrometer - ARTEMIS</td>
<td>13(0)</td>
<td>12(0)</td>
<td>25(2)</td>
</tr>
<tr>
<td>UA</td>
<td>Muon U</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>325</td>
<td>238</td>
<td>374</td>
</tr>
</tbody>
</table>
Table 2. Proposals Numbers of Long Term Proposal for the 2018 Rounds

<table>
<thead>
<tr>
<th>Application</th>
<th>Submitted</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 1. MLF Proposal Numbers over Time

Fig. 2. Origin of Submitted Proposals by affiliation - FY2018

Fig. 3. Submitted Proposals by Sub-committee/Expert Panel – FY2018
<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Title of the experiment</th>
<th>Approval status</th>
<th>Beamline</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAEA</td>
<td>Measurement of X rays from π^- Atom</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>In preparation</td>
</tr>
<tr>
<td>U of Illinois at Urbana-Champaign; KEK</td>
<td>Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron</td>
<td>Deferred</td>
<td>Primary</td>
<td></td>
</tr>
<tr>
<td>Kyoto U</td>
<td>Spectroscopic Study of Ξ-Hypernucleus, 12Be, via the $^1\Sigma K(1, K')$ Reaction</td>
<td>Stage 2</td>
<td>New experiment E70 based on the 5-25 spectrometer</td>
<td>K1.8</td>
</tr>
<tr>
<td>KEK</td>
<td>Measurement of T-violating Transverse Muon Polarization in $K^-\rightarrow \pi^0\mu^-\nu\bar{\nu}$ Decays</td>
<td>E36 as the first step</td>
<td>K1.1BR</td>
<td></td>
</tr>
<tr>
<td>JAEA, Fusio U, Tohoku U</td>
<td>Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>Finished Data analysis</td>
</tr>
<tr>
<td>KEK</td>
<td>Production of Neutron-Rich Lambda-Hypernuclei with the Double Charge-Exchange Reaction (Revised from Initial P10)</td>
<td>Stage 2</td>
<td>Li run finished, Be target run with S-2S spectrometer</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>Measurements of spectral change of vector mesons in nucleon (previously "Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD")</td>
<td>Stage 2 for Run 0</td>
<td>High p</td>
<td></td>
</tr>
<tr>
<td>Osaka U, Osaka EC U</td>
<td>A Search for deeply-bound kaonic nuclear states by in-flight $3\text{He}(K^-, n)$ reaction</td>
<td>Stage 2</td>
<td>K1.8BR</td>
<td>Finished</td>
</tr>
<tr>
<td>KEK</td>
<td>Coincidence Measurement of the Weak Decay of $^{11}_2\text{C}$ and the three-body weak interaction process</td>
<td>Stage 2</td>
<td>K1.8</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>High-resolution Search for Θ Pentaquark in $\pi^- p \rightarrow K K$ Reactions</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>Finished</td>
</tr>
<tr>
<td>Osaka U</td>
<td>An Experimental Search for $\mu^- \rightarrow e$ Conversion at a Sensitivity of 10^{-15} with a Slow-Extracted Bunched Beam</td>
<td>Phase-I Stage 2 Engineering desing and operation plan to be presented.</td>
<td>COMET</td>
<td></td>
</tr>
<tr>
<td>Osaka U</td>
<td>Exclusive Study on the Lambda-N Weak Interaction in $A=4$ Lambda-Hypernuclei</td>
<td>Stage 1</td>
<td>K1.8</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>Extinction Measurement of J-PARC Proton Beam at K1.8BR</td>
<td>Test Experiment (coordinated by JPNC)</td>
<td>K1.8BR</td>
<td>Finished</td>
</tr>
<tr>
<td>KEK</td>
<td>Search for ω-meson nuclear bound states in the $\pi^+Z \rightarrow n+^{16}_2\text{He}(1, Z)$ reaction, and for ω mass modification in the in-medium $\omega \rightarrow \gamma\gamma$ decay</td>
<td>Stage 1</td>
<td>K1.8</td>
<td></td>
</tr>
<tr>
<td>Kyoto U</td>
<td>Search for a nuclear Kbar bound state K-pp in the d(Λ + K$^-$) reaction</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>Finished</td>
</tr>
<tr>
<td>KEK</td>
<td>Search for φ-meson nuclear bound states in the $p\pi^- \rightarrow Z \rightarrow \varphi +^{16}_2\text{He}(2, Z)$ reaction</td>
<td>Stage 2</td>
<td>K1.1</td>
<td></td>
</tr>
<tr>
<td>Osaka U</td>
<td>Spectroscopic study of hyperon resonances below KN threshold via the (K$^-$ n) reaction on Deuteron</td>
<td>Stage 2</td>
<td>K1.8BR</td>
<td>Finished Data analysis</td>
</tr>
<tr>
<td>ETH, Zurich</td>
<td>Towards a Long Baseline Neutrino and Nucleon Decay Experiment with a next-generation 100 kton Liquid Argon TPC</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
<td>Finished</td>
</tr>
<tr>
<td>Nagoya U</td>
<td>Measurement of Neutron Electric Dipole Moment</td>
<td>Deferred</td>
<td>Linac</td>
<td></td>
</tr>
<tr>
<td>KEK, RIKEN</td>
<td>An Experimental Proposal on a New Measurement of the Muon Anomalous Magnetic Moment $g-2$ and Electric Dipole Moment at J-PARC</td>
<td>Stage 2</td>
<td>MLF</td>
<td></td>
</tr>
<tr>
<td>Hampton U, Osaka U</td>
<td>Measurement of $j(K^- \rightarrow \nu\bar{\nu})$ and Search for heavy sterile neutrinos using the TREK detector system</td>
<td>Stage 2</td>
<td>K1.1BR</td>
<td>Finished Data analysis</td>
</tr>
<tr>
<td>Tohoku U</td>
<td>Measurement of the cross sections of $2p$ scatterings</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>Data taking</td>
</tr>
<tr>
<td>Osaka U</td>
<td>An Experimental Search for $\mu^- \rightarrow e$ Conversion in Nuclear Field at a Sensitivity of 10^{-12} with Pulsed Proton Beam from RCS</td>
<td>Stage 2</td>
<td>K1.8</td>
<td>Finished</td>
</tr>
<tr>
<td>Pusan National U</td>
<td>Search for H-Dibaryon with a Large Acceptance Hyperon Spectrometer</td>
<td>Stage 2</td>
<td>Commissioning and physics run plan to be submitted</td>
<td></td>
</tr>
<tr>
<td>Ohio U, JAEA</td>
<td>3-Body Hadronic Reactions for New Aspects of Baryon Spectroscopy</td>
<td>Stage 2</td>
<td>PAC requests that the group further examine ways to reduce the total beam time requested and to find an efficient running scheme, including quick but careful beam tuning.</td>
<td></td>
</tr>
<tr>
<td>KEK</td>
<td>EDID2013 beam test program</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
<td>Abandoned</td>
</tr>
<tr>
<td>Spokespersons</td>
<td>Affiliation</td>
<td>Title of the experiment</td>
<td>Approval status</td>
<td>Beamline</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>T. Maruyama</td>
<td>KEK</td>
<td>Test for 250L Liquid Argon TPC</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>H. Noumi</td>
<td>Osaka U</td>
<td>Charmed Baryon Spectroscopy via the ((\Xi_D^-)) reaction</td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>S. Mihara</td>
<td>KEK</td>
<td>Research Proposal for COMET(E21) Calorimeter Prototype Beam Test</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>Y. Sugimoto</td>
<td>KEK</td>
<td>Test of fine pixel CCDs for ILC vertex detector</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>D. Kawama</td>
<td>KEK</td>
<td>Test of GEM Tracker, Hadron Blind Detector and Lead-glass EMC for the J-PARC E16 experiment</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>K. Miwa</td>
<td>Tohoku U</td>
<td>Test experiment for a performance evaluation of a scattered proton detector system for the (3\p) scattering experiment E40</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>A. Toyoda</td>
<td>KEK</td>
<td>Second Test of Aerogel Cherenkov counter for the J-PARC E36 experiment</td>
<td>Test Experiment</td>
<td>K1.1BR</td>
</tr>
<tr>
<td>J. Zmeskal</td>
<td>Stefan Meyer Institute for Subatomic Physics</td>
<td>Measurement of the strong interaction induced shift and width of the 1s state of kaonic deuterium at J-PARC</td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>M. Yokoyama</td>
<td>U. Tokyo</td>
<td>A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande</td>
<td>Deferred</td>
<td></td>
</tr>
<tr>
<td>A. Minamino</td>
<td>Kyoto U</td>
<td>A test experiment to measure neutrino cross sections using a 3D grid-like neutrino detector with a water target at the near detector hall of J-PARC neutrino beam-line</td>
<td>To be arranged by IPNS and KEK-T2K</td>
<td></td>
</tr>
<tr>
<td>T. Fukuda</td>
<td>Tohoku U</td>
<td>Proposal of an emulsion-based test experiment at J-PARC</td>
<td>Arranged by IPNS and KEK-T2K</td>
<td></td>
</tr>
<tr>
<td>M. Wilking</td>
<td>Stony Brook U</td>
<td>NuPRISM/TITUS</td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>R. Hayano, S. Okada, H. Outa</td>
<td>U. Tokyo, RIKEN</td>
<td>Precision Spectroscopy of kaonic atom X-rays with TES</td>
<td>Stage 2</td>
<td></td>
</tr>
<tr>
<td>H. Tamura</td>
<td>Tohoku U</td>
<td>Gamma-ray spectroscopy of light hypenucluss II</td>
<td>Stage 2</td>
<td></td>
</tr>
<tr>
<td>Y. Koshibo</td>
<td>Okayama U</td>
<td>Measurement of the gamma-ray and neutron background from the T2k neutrino/anti-neutrino at J-PARC B2 Hall</td>
<td>Arranged by IPNS and KEK-T2K</td>
<td></td>
</tr>
<tr>
<td>T. Nakaya</td>
<td>Kyoto U</td>
<td>Proposal for T2K Extended Run</td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>T. Fukuda</td>
<td>Nagoya U</td>
<td>Proposal of an emulsion-based test experiment at J-PARC</td>
<td>Test Experiment</td>
<td></td>
</tr>
<tr>
<td>I. Meigo</td>
<td>JAEA</td>
<td>Measurement of displacement cross section of proton in energy region between 3 and 30 GeV for high-intensity proton accelerator facility</td>
<td>Carry out the experiment within the framework of facility development</td>
<td></td>
</tr>
<tr>
<td>T. Fukuda</td>
<td>Nagoya U</td>
<td>Extension of T60/T66 Experiment: Proposal for the Run from 2017 Autumn</td>
<td>Test Experiment</td>
<td></td>
</tr>
<tr>
<td>A. Minamino</td>
<td>Yokohama National U</td>
<td>Study of neutrino-nucleus interaction at around 1 GeV using cuboid lattice neutrino detector, WAGASHI, muon range detectors and magnetized spectrometer, Baby MIND, at J-PARC neutrino monitor hall</td>
<td>Stage 2</td>
<td></td>
</tr>
<tr>
<td>T. Nagae</td>
<td>Kyoto U</td>
<td>Proposal for the next E05 run with the S-25 spectrometer</td>
<td>Stage 1</td>
<td></td>
</tr>
<tr>
<td>T. Fukuda</td>
<td>Nagoya U</td>
<td>Proposal for precise measurement of neutrinop-water cross-section in JINR physics run</td>
<td>Stage-2</td>
<td></td>
</tr>
<tr>
<td>K. Tanida</td>
<td>JAEA</td>
<td>Search for a Narrow (\Lambda) Resonance using the pK-, (\Lambda\eta) Reaction with the hypTPC Detector</td>
<td>Stage-1 PAC expects the E72 to submit a run plan in the next meeting, where the PAC considers recommendation of a stage-2 approval</td>
<td></td>
</tr>
<tr>
<td>Yue Ma</td>
<td>RIKEN</td>
<td>((^{1}\Lambda\eta)) mesonic weak decay lifetime measurement with (He(K^-\pi^+)\rightarrow^{1}\Lambda\eta) reaction</td>
<td>Deferred PAC will anticipate the recommendation for stage-1 approval of one hypertriton lifetime measurement in the next PAC meeting</td>
<td></td>
</tr>
<tr>
<td>A. Feliciello</td>
<td>INFN, Turino</td>
<td>Direct measurement of the 3(\Lambda\eta) and 4(\Lambda\eta) lifetimes using the 3(\Lambda)He((e^-)), K0(3\Lambda\eta) (\Lambda\eta) reactions</td>
<td>Deferred PAC will anticipate the recommendation for stage-1 approval of one hypertriton lifetime measurement in the next PAC meeting</td>
<td></td>
</tr>
<tr>
<td>H. Fujioka</td>
<td>Tokyo Inst. Tech.</td>
<td>Decay Pion Spectroscopy of S(\Lambda\Lambda) Produced by (\Xi)-hypernuclear Decay</td>
<td>Deferred PAC encourages the proponent to update the proposal for a stage-1 approval. The requested beam time should be finally revised, taking into account the data taken by E70.</td>
<td></td>
</tr>
</tbody>
</table>
Organization and Committees
Organization Structure

J-PARC Center Management System Chart

as of April 1, 2018

Director
N. Saito

Deputy Director (Safety)
T. Ishii

Deputy Director (JAEA)
M. Futakawa

Deputy Director (KEK)
T. Koseki

的安全

Safety Division
Y. Miyamoto - K. Bessho, Y. Nakane

Accelerator Division
K. Hasegawa - M. Kinsho, F. Naito

Materials & Life Science Division
T. Kanaya - K. Soyama, K. Aizawa
T. Otomo, Y. Miyake

Particle & Nuclear Physics Division
T. Kobayashi - T. Komatsubara, Y. Fujii

Nuclear Transmutation Section
M. Futakawa - F. Maekawa

Administration Division
Y. Fukuda - H. Koda

Radiation Safety Section
Y. Kasugai - M. Numajiri, K. Seki

General Safety Section
Y. Nakane

Accelerator Section I
H. Oguri

Accelerator Section II
K. Yamamoto

Accelerator Section III
N. Hayashi

Accelerator Section V
M. Yoshii

Accelerator Section VI
N. Yamamoto

Accelerator Section VII
F. Naito

Neutron Source Section
H. Takada - K. Haga

Neutron Science Section
K. Nakajima - S. Itoh

Neutron Instrumentation Section
K. Sakasai

Muon Science Section
R. Kadono - N. Kawamura

Technology Development Section
K. Aizawa - T. Oku

Neutrino Section
T. Nakadaira

Hadron Section
S. Sawada

Target Technology Development Section
T. Sasa

Facility and Application Development Section
S. Meigo

Cryogenics Section
Y. Makita - K. Sasaki

Information System Section
A. Manabe - K. Gorai

Operations Support Section
K. Soyama

Public Relations Section
T. Koseki - S. Waku

Facility Engineering Section
Y. Yamazaki - Y. Miyamoto

General Affairs Section
H. Koda - K. Suzuki

Users Affairs Section
S. Waku - J. Hoshino

Users Office
K. Maeda

Director’s Office
Advisor (J-PARC) : S. Nagamiya
Advisor (J-PARC) : Y. Ikeda
Advisor (J-PARC) : Y. Fujii
Advisor (J-PARC) : M. Takasaki
Advisor (J-PARC) : T. Ohska
Members of the Committees Organized for J-PARC

(as of March, 2019)

1) Steering Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junji Haba</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Toshikazu Ishii</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Katsuo Tokusyuku</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Nobuhiro Kosugi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Seiya Yamaguchi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Yukitoshi Miura</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Yutaka Maeda</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Masayasu Takeda</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Hiroyuki Oigawa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Kazuo Minato</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Naohito Saito</td>
<td>J-PARC Center, Japan</td>
</tr>
</tbody>
</table>

2) International Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jean-Michel Poutissou</td>
<td>TRIUMF, Canada</td>
</tr>
<tr>
<td>Thomas Prokscha</td>
<td>The Paul Scherrer Institute (PSI), Switzerland</td>
</tr>
<tr>
<td>Jun Sugiyama</td>
<td>Toyota Central R & D Labs., Inc., Japan</td>
</tr>
<tr>
<td>Jie Wei</td>
<td>Michigan State University, USA</td>
</tr>
<tr>
<td>Roland Garoby</td>
<td>European Spallation Source, Sweden</td>
</tr>
<tr>
<td>Eckhard Elsen</td>
<td>European Organization for Nuclear Research (CERN), Switzerland</td>
</tr>
<tr>
<td>Patricia McBride</td>
<td>Fermi National Accelerator Laboratory (FNAL), USA</td>
</tr>
<tr>
<td>Robert Tribble</td>
<td>Brookhaven National Laboratory (BNL), USA</td>
</tr>
<tr>
<td>Donald F. Geesaman</td>
<td>Argonne National Laboratory, USA</td>
</tr>
<tr>
<td>Paolo Giubellino</td>
<td>GSI Helmholtzzentrum für Schwerionenforschung, Germany</td>
</tr>
<tr>
<td>Hamid Ait Abderrahim</td>
<td>SCK • CEN, Belgium</td>
</tr>
<tr>
<td>Akira Hasegawa</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Paul Langan</td>
<td>Oak Ridge National Laboratory (ORNL), USA</td>
</tr>
<tr>
<td>Hidetoshi Fukuyama</td>
<td>Tokyo University of Science, Japan</td>
</tr>
<tr>
<td>Dan Alan Neumann</td>
<td>National Institute of Standards and Technology (NIST), USA</td>
</tr>
<tr>
<td>Andrew Dawson Taylor</td>
<td>Science and Technology Facilities Council (STFC), UK</td>
</tr>
<tr>
<td>Helmut Schober</td>
<td>Institut Laue–Langevin, France</td>
</tr>
</tbody>
</table>

3) User Consultative Committee for J-PARC

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsuyoshi Nakaya</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Taku Yamanaka</td>
<td>Osaka University, Japan</td>
</tr>
<tr>
<td>Hiroaki Aihara</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Takashi Kobayashi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Hirokazu Tamura</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Tomofumi Nagae</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Hiroyuki Noumi</td>
<td>Osaka University, Japan</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Shinya Sawada</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Toshiyuki Takahashi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Masaki Fujita</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Naoya Torikai</td>
<td>Mie University, Japan</td>
</tr>
<tr>
<td>Osamu Yamamuro</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Yosushi Idemoto</td>
<td>Tokyo University of Science, Japan</td>
</tr>
<tr>
<td>Yoshiki Kiyanagi</td>
<td>Nagoya University, Japan</td>
</tr>
<tr>
<td>Tosiji Kanaya</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Jun Akimitsu</td>
<td>Okayama University/Hiroshima University, Japan</td>
</tr>
<tr>
<td>Tadashi Adachi</td>
<td>Sophia University, Japan</td>
</tr>
<tr>
<td>Yasuhiro Miyake</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Jun Sugiyama</td>
<td>Toyota Central R&D Labs., Inc.</td>
</tr>
<tr>
<td>Hiroiuki Kishimoto</td>
<td>Sumitomo Rubber Industries, Ltd.</td>
</tr>
<tr>
<td>Masaaki Hibi</td>
<td>Nippon Steel & Sumitomo Metal Corp.</td>
</tr>
<tr>
<td>Kenya Kubo</td>
<td>International Christian University, Japan</td>
</tr>
<tr>
<td>Toshiro Tomida</td>
<td>Ibaraki Prefecture</td>
</tr>
<tr>
<td>Satoru Yamashita</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Cheol-Ho Pyeon</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Yoshiyuki Kaji</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Wolfram Fischer</td>
<td>Brookhaven National Laboratory (BNL), USA</td>
</tr>
<tr>
<td>Mats Lindroos</td>
<td>European Spallation Source, Sweden</td>
</tr>
<tr>
<td>John Thomason</td>
<td>Science and Technology Facilities Council (STFC), UK</td>
</tr>
<tr>
<td>Sheng Wang</td>
<td>Institute of High Energy Physics (IHEP), China</td>
</tr>
<tr>
<td>Toshiyuki Shirai</td>
<td>National Institutes for Quantum and Radiological Science and Technology (QST), Japan</td>
</tr>
<tr>
<td>Michael Plum</td>
<td>Oak Ridge National Laboratory (ORNL), USA</td>
</tr>
<tr>
<td>Jie Wei</td>
<td>Michigan State Univ., USA</td>
</tr>
<tr>
<td>Robert Zwaska</td>
<td>Fermi National Accelerator Laboratory (FNAL), USA</td>
</tr>
<tr>
<td>Simone Gilardoni</td>
<td>European Organization for Nuclear Research (CERN), Switzerland</td>
</tr>
<tr>
<td>Robert McGreevy</td>
<td>Science and Technology Facilities Council (STFC), UK</td>
</tr>
<tr>
<td>Bertrand Blau</td>
<td>Paul Scherrer Institut (PSI), Switzerland</td>
</tr>
<tr>
<td>Mark Wendel</td>
<td>Oak Ridge National Laboratory (ORNL), USA</td>
</tr>
<tr>
<td>Yoshiki Kiyanagi</td>
<td>Nagoya University, Japan</td>
</tr>
<tr>
<td>Christiane Alba-Simionesco</td>
<td>The Laboratoire Leon Brillouin (LLB), France</td>
</tr>
<tr>
<td>Jamie Schulz</td>
<td>Australian Nuclear Science and Technology Organization(ANSTO), Australia</td>
</tr>
<tr>
<td>Andreas Schreyer</td>
<td>European Spallation Source, Sweden</td>
</tr>
<tr>
<td>Sung-Min Choi</td>
<td>Korea Advanced Institute of Science and Technology, Korea</td>
</tr>
<tr>
<td>Yoshie Otake</td>
<td>RIKEN, Japan</td>
</tr>
<tr>
<td>Masaaki Sugiyama</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Christian Ruegg</td>
<td>The Paul Scherrer Institute (PSI), Switzerland</td>
</tr>
</tbody>
</table>
6) Muon Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Månsson</td>
<td>KTH Royal Institute of Technology, Sweden</td>
</tr>
<tr>
<td>Thomas Prokscha</td>
<td>Paul Scherrer Institut (PSI), Switzerland</td>
</tr>
<tr>
<td>Andrew MacFarlane</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Klaus Kirch</td>
<td>Paul Scherrer Institut (PSI), Switzerland</td>
</tr>
<tr>
<td>Kenya Kubo</td>
<td>International Christian University, Japan</td>
</tr>
<tr>
<td>Tadayuki Takahashi</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Takashi Nakano</td>
<td>Osaka University, Japan</td>
</tr>
<tr>
<td>Hiroshi Amitsuka</td>
<td>Hokkaido University, Japan</td>
</tr>
</tbody>
</table>

7) Radiation Safety Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoshimoto Uwamino</td>
<td>RIKEN, Japan</td>
</tr>
<tr>
<td>Yoshihiro Asano</td>
<td>University of Hyogo, Japan</td>
</tr>
<tr>
<td>Hiroshi Watabe</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Takeshi Iimoto</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>Takeshi Murakami</td>
<td>National Institute of Radiological Science, Japan</td>
</tr>
<tr>
<td>Hitoshi Kobayashi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Yoshinori Namito</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Shinichi Sasaki</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Kazuo Minato</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Michio Yoshizawa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Nobuyuki Kinouchi</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
</tbody>
</table>

8) Radiation Safety Review Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetsuro Ishii</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Yukihiro Miyamoto</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Masaharu Numajiri</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Hidetoshi Kikunaga</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Hiroshi Yashima</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Kanenobu Tanaka</td>
<td>Institute of Physical and Chemical Research (RIKEN), Japan</td>
</tr>
<tr>
<td>Shunsuke Yonai</td>
<td>National Institute for Quantum and Radiological Science and Technoloty (QST), Japan</td>
</tr>
<tr>
<td>Yasuhiro Yamaguchi</td>
<td>Comprehensive Research Organization for Science and Society (CROSS), Japan</td>
</tr>
<tr>
<td>Akira Hirose</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Akihiko Osa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Makoto Kobayashi</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Nobukazu Toge</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Kazuyoshi Masumoto</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Hiroshi Matsumura</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Kazuo Hasegawa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Yoshiaki Fujii</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Takeshi Komatsubara</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Kazuhiko Soyama</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Kotaro Bessho</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Yoshimi Kasugai</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
</tbody>
</table>
9) MLF Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun Akimitsu</td>
<td>Okayama University/Hiroshima University, Japan</td>
</tr>
<tr>
<td>Masaaki Sugiyama</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Yoshiaki Kiyanagi</td>
<td>Nagoya University, Japan</td>
</tr>
<tr>
<td>Mitsuhiro Shibayama</td>
<td>The University of Tokyo, Japan</td>
</tr>
<tr>
<td>Jun Sugiyama</td>
<td>Toyota Central R&D Labs., Inc., Japan</td>
</tr>
<tr>
<td>Jun Takahara</td>
<td>Kyusyu University, Japan</td>
</tr>
<tr>
<td>Takahisa Arima</td>
<td>The University of Tokyo, Japan</td>
</tr>
<tr>
<td>Michihiro Furusaka</td>
<td>National Institute of Advanced Industrial Science and Technology (AIST), Japan</td>
</tr>
<tr>
<td>Masaki Takada</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Toshiyo Yamaguchi</td>
<td>Fukuoka University, Japan</td>
</tr>
<tr>
<td>Hiroshi Amitsuka</td>
<td>Hokkaido University, Japan</td>
</tr>
<tr>
<td>Kenya Kubo</td>
<td>International Christian University, Japan</td>
</tr>
<tr>
<td>Toshiji Kanaya</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Hideki Seto</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Takashi Kamiyama</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Toshiya Otomo</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Yasuhiro Miyake</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Ryosuke Kadono</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Masatoshi Futakawa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Kazuya Azawa</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Masayasu Takeda</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Kazuiko Soyama</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Kenji Nakajima</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Yukinobu Kawakita</td>
<td>Japan Atomic Energy Agency (JAEA), Japan</td>
</tr>
<tr>
<td>Jun-ichi Suzuki</td>
<td>Comprehensive Research Organization for Science and Society (CROSS), Japan</td>
</tr>
</tbody>
</table>

10) Program Advisory Committee (PAC) for Nuclear and Particle Physics Experiments at the J-PARC 50Gev Proton Synchrotron

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nori Aoi</td>
<td>Osaka University, Japan</td>
</tr>
<tr>
<td>Ryuichiro Kitano</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Masahiro Kuzue</td>
<td>Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>Hirokazu Tamura</td>
<td>Tohoku University, Japan</td>
</tr>
<tr>
<td>Ichiro Adachi</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Yoshitaka Itow</td>
<td>High Energy Accelerator Research Organization (KEK), Japan</td>
</tr>
<tr>
<td>Akira Ohnishi</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Deborah Harris</td>
<td>Fermi National Accelerator Laboratory (FNAL), USA</td>
</tr>
<tr>
<td>Steven Kettell</td>
<td>Brookhaven National Laboratory (BNL), USA</td>
</tr>
<tr>
<td>Josef Pochodzalla</td>
<td>University of Mainz, Germany</td>
</tr>
<tr>
<td>Monika Blankne</td>
<td>Karlsruhe Institute of Technology, Germany</td>
</tr>
<tr>
<td>Francois Le Diberder</td>
<td>The French National Institute of Nuclear and Particle Physics (IN2P3), France</td>
</tr>
<tr>
<td>Anthony William Thomas</td>
<td>University of Adelaide, Australia</td>
</tr>
<tr>
<td>Nu Xu</td>
<td>Lawrence Berkeley National Laboratory, USA</td>
</tr>
<tr>
<td>Rikutaro Yoshiida</td>
<td>Thomas Jefferson National Accelerator Facility, USA</td>
</tr>
</tbody>
</table>
11) TEF Technical Advisory Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marc Schyns</td>
<td>SCK • CEN, Belgium</td>
</tr>
<tr>
<td>Michael Butzek</td>
<td>Forschungszentrum Jülich, Germany</td>
</tr>
<tr>
<td>Michael Wohlmuther</td>
<td>Paul Scherrer Institut (PSI), Switzerland</td>
</tr>
<tr>
<td>Yoshiaki Kiyanagi</td>
<td>Nagoya University, Japan</td>
</tr>
<tr>
<td>Keishi Sakamoto</td>
<td>National Institutes for Quantum and Radiological Science and Technology (QST), Japan</td>
</tr>
<tr>
<td>Georg Müller</td>
<td>Karlsruhe Institute of Technology, Germany</td>
</tr>
<tr>
<td>Masatoshi Kondo</td>
<td>Tokyo Institute of Technology, Japan</td>
</tr>
</tbody>
</table>
Main Parameters
Present main parameters of Accelerator

<table>
<thead>
<tr>
<th>Linac</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated Particles</td>
<td>Negative hydrogen</td>
</tr>
<tr>
<td>Energy</td>
<td>400 MeV</td>
</tr>
<tr>
<td>Peak Current</td>
<td>50 mA</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>0.27 ms for MLF</td>
</tr>
<tr>
<td></td>
<td>0.50 ms for MR-FX</td>
</tr>
<tr>
<td></td>
<td>0.10 ms for MR-SX</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>25 Hz</td>
</tr>
<tr>
<td>Freq. of RFQ, DTL, and SDTL</td>
<td>324 MHz</td>
</tr>
<tr>
<td>Freq. of ACS</td>
<td>972 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RCS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>348.333 m</td>
</tr>
<tr>
<td>Injection Energy</td>
<td>400 MeV</td>
</tr>
<tr>
<td>Extraction Energy</td>
<td>3 GeV</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>25 Hz</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>0.938 MHz → 1.67 MHz</td>
</tr>
<tr>
<td>Harmonic Number</td>
<td>2</td>
</tr>
<tr>
<td>Number of RF cavities</td>
<td>12</td>
</tr>
<tr>
<td>Number of Bending Magnet</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Ring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>1567.5 m</td>
</tr>
<tr>
<td>Injection Energy</td>
<td>3 GeV</td>
</tr>
<tr>
<td>Extraction Energy</td>
<td>30 GeV</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>~0.4 Hz</td>
</tr>
<tr>
<td>RF Frequency</td>
<td>1.67 MHz → 1.72 MHz</td>
</tr>
<tr>
<td>Harmonic Number</td>
<td>9</td>
</tr>
<tr>
<td>Number of RF cavities</td>
<td>9</td>
</tr>
<tr>
<td>Number of Bending Magnet</td>
<td>96</td>
</tr>
</tbody>
</table>

Key parameters of Materials and Life Science Experimental Facility

| Injection energy | 3 GeV |
| Reptition rate | 25 Hz |

Neutron Source

Target material	Mercury
Number of moderators	3
Moderator material	Liquid hydrogen
Moderator temperature/pressure	20 K/1.5 MPa
Number of neutron beam extraction ports	23

Muon production target

| Target material | Graphite |
| Number of muon beam extraction ports | 4 |

Neutron instruments *

- Open for user program (general use): 20
- Under commissioning/construction: 1/0

Muon Instruments *

- Open for user program (general use): 3
- Under commissioning/construction: 1/0

(* As of March, 2018)
Safety Day at J-PARC (May 25)

To improve safety awareness of the staff and ensure that the lessons of the radioactive material leak accident at the Hadron Experimental Facility on May 23, 2013, are not forgotten, the J-PARC Center holds a Safety Day on the fourth Friday of May every year. The 2018 Safety Day was May 25, and the event included two sessions, a “Meeting to exchange information on safety” in the morning, and a “5/23 workshop for fostering safety culture” in the afternoon.

J-PARC “Hello Science” - Reducing waste in nuclear power generation in hybrid nuclear reactor- nuclear reactor driven by accelerators, and the accelerator-driven system- (June 29)

The J-PARC Center holds a science café named “Hello Science” every month at the Tokai Village Industry and Information Plaza “Ivill” in Ibaraki Prefecture. In June, Dr. Toshinobu Sasa, the leader of the Target Technology Development Section, Nuclear Transmutation Division, delivered a lecture on nuclear transmutation technology. That technology uses an accelerator to
reduce the harm from the waste in the nuclear power generation. He explained that J-PARC has been conducting research to build a new nuclear reactor called “Accelerator-Driven System” (ADS), which transmutes nuclear waste efficiently and safely by combining an accelerator and a nuclear reactor.

J-PARC Exhibited at the GSA (GEO SPACE ADVENTURE) 2018 (July 14-15)

The GSA is an underground exploration event held every summer, which is performed in Kamioka-cho, Gifu Prefecture, using the actual tunnel of the Kamioka mine and the cutting-edge research facilities of astrophysics, such as Super Kamiokande (SK). The event is organized by the “GSA Executive Committee”, which is put on by Hida citizens and volunteer staff. Since 2017, we have been contributing to it as an exhibitor.

At the Kamioka-cho Community Center, we performed briefings about the experiment of the Gauss exhibit, and the experiments in J-PARC, including the T2K Experiment.

Debriefing on the industrial use of J-PARC MLF in fiscal year 2018 (July 23-24)

We held a debriefing on the industrial use of the Material and Life Science Experimental Facility (MLF) in Tokyo, and over 300 people from the government, various industries and the academia visited the venue. At the debriefing, we also held a commemorative session celebrating the 10th anniversary of the inauguration of the Industrial Users Society for Neutron Application. It launched at the same time when MLF user operation started. Vice-president Etsuhiko Shoyama, who is among the promoters, expressed his thoughts. Naohito Saito, Director of the J-PARC Center, reported the present state of the adoption of more than 500 proposals so far on the industrial use and the successful stable operation of MLF for approximately one hour at a beam power of 1MW in early July.

J-PARC runs a booth “Eco Accelerated with J-PARC” at Eco Festival Hitachi 2018 (July 21)

J-PARC ran a booth at Eco Festival Hitachi 2018 at the Hitachi Civic Center. We introduced our research activities and explained the functions of our facilities, and exhibited Sumitomo Rubber Industries, Ltd.’s high-performance tire. It was an anti-wear tire product improved by using MLF’s neutron beam. In addition, at a superconductive coaster experiment corner, many children excitedly worked on the experiment.

J-PARC Center’s outreach activities (August 1-2, 4, 22, 24, 28)

The J-PARC Center conducts scientific experiment classes at schools, libraries and other facilities during the school summer vacation, with the aim to encourage children’s interest in science. The center held the events on the topics of light, accelerators, and energy.

2018 opening of J-PARC’s facilities to the public (August 19)

We conducted the 2018 opening of the J-PARC facilities to the public. Approximately 1,500 people visited the usually inaccessible facilities, such as accelerators in a tunnel and experimental facilities. There were also some seminars on J-PARC’s cutting-edge research activities, science café on elementary particle and material and life science.
Nagoya University branch office established in J-PARC (October 26)

There was a signing ceremony at the J-PARC Research Building between the High Energy Accelerator Research Organization (KEK) and Nagoya University on the memorandum to establish a research base. The establishment of a branch office of that university follows the ones by Osaka University in March 2016, Kyoto University in February 2017, and Kyushu University in March 2018.

J-PARC Science Café, “Hello Science” Workshop, featuring “Let’s Create an Optical Kaleidoscope” held during the Nuclear Fusion Facility Visiting Tour (October 21)

The Naka Fusion Institute, a division of the National Institute for Quantum and Radiological Science and Technology (QST), received visitors for a facility study tour. The J-PARC Center offered a craft/experiment class of the “Hello Science” Workshop, “Let’s Create an Optical Kaleidoscope”.

Special request event of “Hello Science” (October 26)

Our science communicator Dr. Shinichi Sakamoto explained three topics previously requested by participants: a review of the standard model of the elementary particles, the CP symmetry breaking of neutrinos, and the observation of gravitational waves.

Participation in the 6th Ozora Marche 2018 event with a booth, J-PARC Science Experience Corner (October 21)

The 6th Ozora Marche event took place at Daijingu and Muramatsusun Kokuzodo in Tokai Village. This year, J-PARC had a joint booth with the Nuclear Science Research Institute, a research division of the Japan Atomic Energy Agency (JAEA), to introduce J-PARC’s experimental facilities and the generated results that found industrial use. Visitors also enjoyed the experiment of a superconductive rollercoaster.
g-2/EDM collaboration meeting (May 14-17, November 20-23)

There were two collaboration meetings on the E34 experiment in 2018 at J-PARC. The experiment’s topic is the muon anomalous magnetic dipole movement (g-2)/electric dipole moment (EDM). About 60 and 50 researchers attended them, respectively.

Third Neutron and Muon School (November 20-24)

The J-PARC Center and the Comprehensive Research Organization for Science and Society (CROSS) held the third Neutron and Muon School jointly with 11 organizations in Japan. The school drew some 35 students and young researchers from Japan, China, South Korea, India, Thailand, Russia and Great Britain. It also functioned as an international forum for human resource training by J-PARC.

Three public lectures held by the Japan Society for Neutron Science (December 8)

A series of public lectures organized by the Japan Society for Neutron Science was held at the Ibaraki Quantum Beam Research Center (IQBRC). The titles of the three lectures were: “Are neutron beams useful? Living, industry, medicine and space”, “Utilization of neutron beams that open up future applications in living, industry and medicine” and “What you should know about particle therapy for cancer treatment”.

KOTO Experiment collaboration meeting (June 13-15, December 14-16)

The KOTO Experiment on the rare decay of the neutral kaon has been running at the Hadron Experimental Facility as an international collaborative research project. To promote this research, the group holds meetings twice a year.

Reimei Workshop “J-PARC-HI opens up the Physics of High-Density Materials and Strangeness” (December 15)

J-PARC held a workshop to study the strangeness of the highest density matter in the universe. Around 60 researchers in the field of nuclear physics discussed the significance of the J-PARC Heavy Ion Project (J-PARC-HI).

6th Accelerator Facility Safety Symposium (January 24-25)

The 6th Accelerator Facility Safety Symposium was held at the Ibaraki Quantum Beam Research Center (IQBRC). Various initiatives were introduced under the theme of personal dose management and fire emer-
gency response at accelerator facilities. Mr. Fabian Saretzki, in charge of safety at accelerator facilities in Germany, gave a talk on the fire emergency response measures at European XFEL, which operates a 3-km long accelerator tunnel.

J-PARC “Hello Science” - “Investigating the matter inside neutron stars based on “strange” nuclei (January 25)

Neutron stars are thought to be the densest objects in the universe, and a research on the hyper-nuclei containing strange quarks is currently underway to understand the matter, which forms the neutron stars. Dr. Toshiyuki Takahashi of the Hadron Section presented an introductory overview of the research.

J-PARC “Hello Science” Exhibition at the 26th Hitachi Science Show Festival (February 3)

The J-PARC “Hello Science” Exhibition at the 26th Hitachi Science Show Festival was held on February 3.

J-PARC “Hello Science” - Visualization of secondary lithium-ion batteries using neutron beams (February 22)

Dr. Masao Yonemura delivered a lecture on the forefront of research and development of batteries that utilize neutron beams created at MLF’s Special Environment Neutron Diffractometer (BL09 SPICA). He explained what reaction would take place inside a lithium-ion secondary battery and what to do to improve its performance.

Okayama University signed the MOU towards establishing a J-PARC branch office (March 14)

The signing ceremony of “Memorandum of Understanding on Establishing an Education and Research Hub between KEK and Okayama University” was held in Tokyo.

The Quantum Beam Science Festa 2018, 10th Symposium/36th PF Symposium (March 12-13)

The Quantum Beam Science Festa was held under the joint auspices of KEK IMSS and J-PARC Center MLF. It attracted approximately 580 participants.
T2K collaboration meeting (May 8-12, August 20-25, December 3-7, March 25-29)

In fiscal year 2018, T2K collaboration meetings were held four times. Three of them were in the Ibaraki Quantum Beam Research Center (IQBRC) in Tokai Village, the August meeting was held in Toyama Prefecture.

J-PARC Workshop “Collaborative Research Conference of Small to Large Facilities” (March 28)

The Japanese Society for Neutron Science, the J-PARC Center, and Japan Collaboration Accelerator-driven Neutron Sources (JCANS) jointly held a “Collaborative Research Conference of Small to Large Neutron Source Facilities” as a J-PARC Workshop. There were about 90 participants and 11 facilities presented their reports.

Visitors

In fiscal year 2018, J-PARC was visited by the following distinguished guests:

- Taylor Wilson, nuclear physicist (April 12, November 15)
- His Excellency Magnus Robach, Swedish Ambassador to Japan (November 13)
- Yoshimasa Uno, Vice Governor of Ibaraki Prefecture (December 3)
- Liu Weiping, Vice President of the China Institute of Atomic Energy (CIAE) (December 5)
- Mary Alice Hayward, the Deputy Director General and Head of the Department of Management of the International Atomic Energy Agency (IAEA) (January 23)
- Keiko Nagaoka, Vice Minister of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (January 24).

In total, there were 2,957 visitors to J-PARC for the period from April 2018 to the end of March 2019.
Publications in Periodical Journals

A-007 K. Ikeuchi, et al. Al-impurity-induced magnetic excitations in heavily over-doped La1.75Sr0.3Cu0.95Al0.05O4 AIP Adv., Vol. 8, 101318

A-012 Z. Tan, et al. Synthesis, Structural and Magnetic Properties of La0.5Ba0.5CoO2.75+x Atom Indonesia, Vol. 44, 49

A-017 K. Kataoka, et al. High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12 ChemElectroChem, Vol. 5, 2551-2557

A-027 K. Mishima, et al. Accurate determination of the absolute 3He/4He ratio of a synthesized helium standard gas (Helium Standard of Japan, HESJ): Towards revision of the atmospheric 3He/4He ratio Geochemistry, Geophysics, Geosystems, Vol. 19, 3995-4005

A-028 T. Suwa, et al. Evaluation of Thermal Strain Induced in Components of Nb3Sn Strand During Development of design for large scale conductors and coils using MgB2 for superconducting magnetic energy storage device Cryogenics, Vol. 96, 75
A-029
M. Sugano, et al.
Training Performance With Increased Coil Pretress of the 2 m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

A-030
Y. Yang, et al.
Study of Irradiation Effects on Thermal Characteristics for COMET Pion Capture Solenoid

A-031
K. Suzuki, et al.
Quench Protection Heater Study With the 2-m Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

A-032
Influence of 3-D Effects on Field Quality in the Straight Part of Accelerator Magnets for the High-Luminosity Large Hadron Collider

A-033
S. Enomoto, et al.
Field Measurement to Evaluate Iron Saturation and Coil End Effects in a Modified Model Magnet of Beam Separation Dipole for the HL-LHC Upgrade

A-034
T. Takayanagi, et al.
A New Pulse Magnet for the RCS Injection Shift Bump Magnet at J-PARC

A-035
M. Aoki, et al.
Evaluation of Strain Dependence of Superconducting Magnet Quenches by Using a Three-Point Bending Test Stand

A-036
M. Tomita, et al.
Superconducting Properties of a Prototype Pancake Coil Using a MgB2 Rutherford-Type Stranded Conductor

A-037
Measurement and Mechanism Investigation of Negative and Positive Muon-Induced Upsets in 65nm Bulk SRAMs

A-038
S. Manabe, et al.
Negative and Positive Muon-Induced Single Event Upsets in 65-nm UTBB SOI SRAMs

A-039
N. M. Truong, et al.
Real-Time Lossless Compression of Waveforms Using an FPGA

A-040
Y. Higaki, et al.
Counteranion-Specific Hydration States of Cationic Polyelectrolyte Brushes

A-041
K. Asano, et al.
Structural Variation of Self-Organized Mg Hydride Nanoclusters in Immiscible Ti Matrix by Hydrogenation

A-042
F. Takeiri, et al.
A Fluorine-rich Perovskite Oxyfluoride AgFeOF2
Inorg. Chem., Vol. 57, 6686-6691

A-043
W. Gong, et al.
Deformation behavior of as-cast and as-extruded Mg97Zn1Y2 alloys during compression, as tracked by in situ neutron diffraction
Int. J. Plast., Vol. 111, 288-306

A-044
K. Itoh, et al.
Inhomogeneity of local packing density and atomic bonding of Ni67Zr33 amorphous alloy
J. ALLOYS COMPD., Vol. 732, 585-592

A-045
T. Okuchi, et al.
Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids
J. Chem. Phys., Vol. 149, 054502/1-11

A-046
K. Yoshida, et al.
Thermal behavior, structure, dynamic properties of aqueous glycin solutions confined in mesoporous silica MCM-41 investigated by x-ray diffraction and quasi-elastic neutron scattering
J. Chem. Phys., Vol. 149, 124502

A-047
H. Yamashita, et al.
Disorder Transition in LnHO Enabled by Electrochemical cell as a solid electrolyte for a hydrogen electrochemical cell

A-048
Y. Nagata, et al.
Elucidating the solvent effect on the switch of the helicity of poly(quinoxaline-2,3-diy)-s: A conformational analysis by small-angle neutron scattering

A-049
T. Okuchi, et al.
Quasielastic neutron scattering of brucite to analyse hydrogen transport on the atomic scale
J. Appl. Crystallogr., Vol. 51, 1564-1570

A-050
T. Kawasaki, et al.
Stroboscopic time-of-flight neutron diffraction during cyclic testing using the event data recording system at J-PARC
J. Appl. Crystallogr., Vol. 51, 630-634

A-051
P. G. Xu, et al.
High stereographic resolution texture and residual stress evaluation using time-of-flight neutron diffraction

A-052
A. Shinozaki, et al.
Behavior of intermolecular interactions in a-glycine under high pressure

A-053
F. Nemoto, et al.
Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids
J. Chem. Phys., Vol. 149, 054502/1-11

A-054
K. Yoshida, et al.
Thermal behavior, structure, dynamic properties of aqueous glycin solutions confined in mesoporous silica MCM-41 investigated by x-ray diffraction and quasi-elastic neutron scattering
J. Chem. Phys., Vol. 149, 124502

A-055
S. Takada, et al.
Characterization of germanium detectors for the measurement of the angular distribution of prompt γ-rays at the ANNRI in the MLF of the J-PARC
J. Instrum., Vol. 13, P02018

A-056
V. Bayliss, et al.
The liquid-hydrogen absorber for MICE
J. Instrum., Vol. 13, T09008

A-057
A. Suzuki, et al.
The LiteBIRD Satellite Mission: Sub-Kelvin
Instrument
J. Low Temp. Phys., Vol. 193, 1048

A-058
T. Hasebe, et al.
Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD
J. Low Temp. Phys., Vol. 193, 841

A-059
K. Fuji, et al.
High oxide-ion conductivity by the overbonded channel oxygens in Si-deficient La9.565(Si5.826O1.174)O26 apatite without interstitial oxygens
J. Mater. Chem. A, Vol. 6, 10835-10846

A-060
Y. Iwasaki, et al.
Synthesis, crystal structure, and ionic conductivity of hydride ion-conducting Ln2 LiHO3 (Ln = La, Pr, Nd) oxyhydrides
J. Mater. Chem. A, Vol. 6, 23457-23463

A-061
H. Abe, et al.
Dynamic properties of nano-confined water in an ionic liquid
J. Mol. Liq., Vol. 264, 54-57

A-062
H. Muta, et al.
Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride
J. Nucl. Mater., Vol. 500, 145-152

A-063
A. Mori, et al.
Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy
J. Nucl. Mater., Vol. 501, 72-81

A-064
T. Wakui, et al.
Recent studies for structural integrity evaluation and defect inspection of J-PARC spallation neutron source target vessel
J. Nucl. Mater., Vol. 506, 3-11

A-065
Y. Iwamoto, et al.
Measurement of displacement cross sections of aluminum and copper at 5 K by using 200 MeV protons
J. Nucl. Mater., Vol. 508, 195

A-066
H. Katagiri, et al.
Development of an all-sky gamma-ray Compton camera based on scintillators for high-dose environments
J. Nucl. Sci. and Technol., Vol. 55, 1172

A-067
K. Terada, et al.
Measurements of neutron total and capture cross sections of 241Am with ANNRI at J-PARC
J. Nucl. Sci. and Technol., Vol. 55, 1198-1211

A-068
H. Takei, et al.
Evaluation of mean time between accidental interruptions for accelerator klystron systems based on the reliability engineering and method
J. Nucl. Sci. and Technol., Vol. 55, 996-1008

A-069
H. Iwamoto, et al.
Monte Carlo uncertainty quantification of the effective delayed neutron fraction

A-070
H. Matsuda, S. Meigo, H. Iwamoto
Proton-induced activation cross section measurement for aluminum with proton energy range from 0.4 to 3 GeV at J-PARC

A-071
M. Hirai, et al.
Restoration of myoglobin native fold from its initial state of amyloid formation by trehalose

A-072
Y. Kameda, et al.
Neutron Diffraction Study on the Structure of Hydrated Li(+) in Dilute Aqueous Solutions

A-073
S. Ajito, et al.
Sugar-mediated stabilization of protein against chemical or thermal denaturation

A-074
J. Kijima, et al.
Structural characterization of myoglobin molecules adsorbed within mesoporous silicas

A-075
S. Taminato, et al.
Reversible Structural Changes and High-Rate Capability of Li3P04-Modified Li2RuO3 for Lithium-Rich Layered Rocksalt Oxide Cathodes

A-076
F. Tamura, et al.
Baseband simulation model of the vector rf voltage control system for the J-PARC RCS
J. Phys. Conf. Ser., Vol. 1067, 072030_1 - 072030_6

A-077
T. Tsuchiya, et al.
Mn2VAl Heusler alloy thin films: Appearance of antiferromagnetism and exchange bias in a layered structure with Fe

A-078
K. Iwasa, et al.
Magnetic-Ordering Propagation Vectors of Terbium Hexaboride Revisited

A-079
T. Nakajima, et al.
Uniaxial-stress effects on helimagnetic orders and skyrmion lattice in Cu2OSeO3

A-080
T. Matsushita, et al.
Principle and Reconstruction Algorithm for Atomic-Resolution Holography

A-081
H. Kadowaki, et al.
Continuum excitation and pseudospin wave in quantum spin-liquid and quadrupole ordered states of Tb2-xTl2-xO7-y

A-082
N. Metoki, et al.
Neutron Inelastic Scattering Study of the f-Electron States in NdPd5Al2

A-083
Y. Oba, et al.
Imaging Measurement of Neutron Attenuation by Small-Angle Neutron Scattering Using Soller Collimator

A-084
K. Oyama, et al.
Neutron Diffraction Studies on Valence Ordering Compound YbPd

A-085
Y. Idemoto, et al.
Effect of operating temperature on local structure during first discharge of 0.4Li2MnO3-0.6LiMn1/3Ni1/3Co1/3O2 electrodes
J. POWER SOURCES, Vol. 378, 198-208

A-086
K. Ninomiya, et al.
Ordering Compound YbPd

A-087
N.V. Mdlovu, et al.
Multifunctional nanocarrier as a potential micro-RNA delivery vehicle for neuroblastoma treatment
J. Taiwan Inst. Chem. Eng., Vol. 96, 526-537

A-088

W. Uno, *et al.*

Experimental visualization of oxide-ion diffusion paths in pyrochlore-type Yb2Ti2O7
JCS-Japan, Vol. 126, 341-345

A-089

K. Fuji, *et al.*

Discovery and development of BaNdInO4 - A brief review
JCS-Japan, Vol. 126, 852-859

A-090

Y. Kitanaka, *et al.*

Crystal Structure and ferroelectric polarization of tetragonal (Bi1/2Na1/2) TiO3-12 %BaTiO3
Jpn. J. Appl. Phys., Vol. 57, 11UD05

A-091

Y. Ogata, *et al.*

Impact of the Solid Interface on Proton Conductivity in Nafton Thin Films
Langmuir, Vol. 34, 15483-15489

A-092

K. Shimokita, *et al.*

Effect of Preferential Orientation of Lamellae in Interfacial Region between Block Copolymer-based Pressure-Sensitive Adhesive and Solid Substrate on the Peel Strength
Langmuir, Vol. 34, 2856-2864

A-093

K. Yanagi, *et al.*

Polyrotaxane brushes dynamically formed at a water/elastomer interface
Langmuir, Vol. 34, 5297-5302

A-094

F. Endo, *et al.*

Mechanically tough syndiotactic polypropylene (sPP) gels realized by fast quenching using liquid nitrogen
Macromolecules, Vol. 51, 2321-2327

A-095

Y. Shudo, *et al.*

Diffusion Behavior of Methanol Molecules Confined in Cross-linked Phenolic Resins Studied using Neutron Scattering and Molecular Dynamics Simulations
Macromolecules, Vol. 51, 6334-6343

A-096

T. Iwamoto, *et al.*

Conformations of ring polystyrenes in semidilute solutions and in linear polymer matrices studied by SANS
Macromolecules, Vol. 51, 6836-6847

A-097

T. Sun, *et al.*

Investigation of residual stress distribution and texture evolution in AA7050 stationary shoulder friction stir welded joints

A-098

K. Murasawa, *et al.*

Determination Approach of Dislocation Density and Crystallite Size Using a Convolutional Multiple Whole Profile Software
Mater. Trans., Vol. 59, 1135-1141

A-099

A. Taketani, *et al.*

Quantification of localized water image in under film corroded steel with high spatial resolution, high time resolution, and wide view by neutron radiography
Mater. Trans., Vol. 59, 976-983

A-100

T. Wan, S. Saito

A-101

B. Li, *et al.*

Liquid-like thermal conduction in intercalated layered crystalline solids
Nat. Mater., Vol. 17, 226-230

A-102

W. Yao, *et al.*

Topological spin excitations in a three dimensional antiferromagnet
Nat. Phys., Vol. 14, 1011-1015

A-103

T. Matsumura, *et al.*

A neutral-beam profile monitor with a phosphor screen and a high-sensitivity camera for the J-PARC KOTO experiment

A-104

K. Satou, *et al.*

New data acquisition system for beam loss monitor used in J-PARC main ring

A-105

R. Maruyama, *et al.*

Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

A-106

M. Abe, *et al.*

Magnetic design and method of a superconducting magnet for muon g - 2/ EDM precise measurements in a cylindrical volume with homogeneous magnetic field

A-107

B. Kim, *et al.*

Development of a microchannel plate based beam profile monitor for a re-accelerated muon beam

A-108

H. Ito, *et al.*

Performance check of the CsI(Tl) calorimeter for the J-PARC E36 experiment by observing e+ from muon decay

A-109

Y. Morita, *et al.*

Capacitor bank of power supply for J-PARC MR main magnets

A-110

M. Tomizawa, *et al.*

Slow extraction from the J-PARC main ring using a dynamic bump

A-111

M. Harada, *et al.*

Experimental validation of the brightness distribution on the surfaces of coupled and decoupled moderators composed of 99.8% parahydrogen at the J-PARC pulsed spallation neutron source

A-112

S. Itoh, *et al.*

Pendellosung interferometry by using pulsed neutrons

A-113

W. Guan, *et al.*

Optimization study on structural analyses for the J-PARC mercury target vessel

A-114

T. Fujiwara, *et al.*

Radiation imaging with glass gas electron multipliers (G-GEMs)
A-115
M. Teshigawara, et al.
Implementation of a low-activation Au-In-Cd decoupler into the J-PARC 1 MW short pulsed spallation neutron source
Nuclear Materials and Energy, Vol. 14, 14-21

A-116
T. Takamuku, et al.
Hydrogen bonds of the imidazolium-ring of ionic liquids with DMSO studied by NMR, soft X-ray spectroscopy, and SANS
Phys. Chem. Chem. Phys., Vol. 20, 12858

A-117
Y. Ishii, et al.
Pressure-induced stacking disorder in Boehmite
Phys. Chem. Chem. Phys., Vol. 20, 16650

A-118
A. Doté, et al.
Fully coupled-channel study of K–pp resonance in a chiral SU(3)-based K N
Phys. Chem. Chem. Phys., Vol. 20, 140405

A-119
Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

A-120
S. Bae, et al.
First muon acceleration using a radio-frequency accelerator

A-121
Y. Shobuda, et al.
Reducing the beam impedance of the kicker at the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

A-122
A. W. T. Gregg, et al.
Tomographic Reconstruction of Two-Dimensional Residual Strain Fields from Bragg-Edge Neutron Imaging

A-123
H. Shishido, et al.
High-Speed Neutron Imaging Using a Current-Biased Delay-Line Detector of Kinetic Inductance

A-124
S. Shamoto, et al.
Neutron scattering study of yttrium iron garnet

A-125
K. Horigane, et al.
Magnetic phase diagram of Sr2-xLa1xIrO4 synthesized by mechanical alloying

A-126
T. Hattori
Is there a pressure-induced discontinuous volume change in liquid Cs?

A-127
I. Yamauchi, et al.
Local spin structure of the α-RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

A-128
S. Hayashida, et al.
Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3

A-129
T. Kim, et al.
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling

A-130
N. Murai, et al.
Effect of electron correlations on spin excitation bandwidth in Ba0.75K0.25Fe2As2 as seen via time-of-flight inelastic neutron scattering

A-131
T. Nakajima, et al.
Phase-transition kinetics of magnetic skyrmions investigated by stroboscopic small-angle neutron scattering

A-132
H. Okabe, et al.
Local electronic structure of interstitial hydrogen in iron disulfide

A-133
P. Wu, et al.
Investigation of the electronic structure and lattice dynamics of the thermoelectric material Na-doped SnSe

A-134
S. Lee, et al.
Magnetoelastic octahedral breathing mode in the ferrimagnetic La2CoIrO6 double perovskite

A-135
S. Torigoe, et al.
Nanoscale ice-type structural fluctuation in spinel titanates

A-136
H. Tamatsukuri, et al.
Gapless magnetic excitation in a heavily electron-doped antiferromagnetic phase of LaFeAsO0.5

A-137
T. Moyoshi, et al.
Inelastic neutron scattering study on the electronic transition in (Pr1-yYy)1-xCaxCoO3 single crystals

A-138
H. Kohri, et al.
Differential cross section and photon-beam asymmetry for the →→γp ! π+n reaction at forward n+ angles at Ey = 1.5–2.95 GeV

A-139
S. H. Shiu, et al.
Photoproduction of Λ and Σ0 hyperons off protons with linearly polarized photons at Ey = 1.5–3.0 GeV

A-140
M. Aaboud, et al.
Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider

A-141
T. Okudaia, et al.
Angular distribution of γ rays from neutron-induced compound states of 140La

A-142
A. Konishi, et al.
Degenerate two-body and three-body coupled-channels systems: Renormalized effective Alt-Grassberger-Sandhas equations and near-threshold resonances

A-143
A. Adare, et al.
Measurements of mass-dependent

azimuthal anisotropy in central p + Au, d + Au, and 3He + Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

A-144
A. Adare, et al.
Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{\text{NN}}} = 200$ GeV Au+Au collisions

A-145
A. Adare, et al.
Measurement of emission-angle anisotropy via long-range angular correlations with high-pT hadrons in d + Au and p + p collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

A-146
A. Adare, et al.
Low-momentum direct-photon measurement in Cu + Cu collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

A-147
C. Aidala, et al.
Production of n0 and η mesons in Cu + Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV

A-148
K. Abe, et al.
First measurement of the $\nu\eta$ charged-current cross section on a water target without pions in the final state

A-149
S. Kumano, et al.
Hadron tomography by generalized distribution amplitudes in the pion-pair production process $\gamma^* p \rightarrow \pi^- + \eta n$ and gravitational form factors for pion
Phys. Rev. D, Vol. 97, 014020

A-150
K. Abe, et al.
Measurement of the single n0 production rate in neutral current neutrino interactions on water

A-151
C. C. Haddock, et al.
A Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam

A-152
K. Abe, et al.
Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV

A-153
A. Aguilar-Arevalo, et al.
Improved search for heavy neutrinos in the decay $\pi^+ \rightarrow \nu e\nu$
Phys. Rev. D, Vol. 97, 072012

A-154
K. Abe, et al.
Measurement of inclusive double-differential $\nu\eta$ charged-current cross section with improved acceptance in the T2K off-axis near detector

A-155
C. Aidala, et al.
Single-spin asymmetry of J/ψ production in p + p, p + Al, and p + Au collisions with transversely polarized proton beams at $\sqrt{s_{\text{NN}}} = 200$ GeV
Phys. Rev. D, Vol. 98, 012006

A-156
K. Abe, et al.
Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K

A-157
A. Adare, et al.
Cross section and longitudinal single-spin asymmetry AL for forward W ± μ ± ν production in polarized p + p collisions at $s = 510$ GeV

A-158
Z. Li, et al.
Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande

A-159
C. Aidala, et al.
Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in p + p collisions at $\sqrt{s} = 200$ GeV

A-160
M. Aghasyan, et al.
Light isovector resonances in $\pi^- p \rightarrow \pi^- \eta n$ and $\pi^- n p$ at 190 GeV/c
Phys. Rev. D, Vol. 98, 092003

A-161
A. Adare, et al.
Measurement of φ-meson production at forward rapidity in p + p collisions at $\sqrt{s} = 510$ GeV and its energy dependence from \sqrt{s} = 200 GeV to 7 TeV

A-162
R. Inoue, et al.
Experimental investigation of the glass transition of polystyrene thin films in a broad frequency range
Phys. Rev. E, Vol. 97, 012501

A-163
C. Aidala, et al.
Nuclear Dependence of the Transverse-Single-Spin Asymmetry for Forward Neutron Production in Polarized p + A Collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV
Phys. Rev. Lett., Vol. 120, 022001

A-164
C. Aidala, et al.
Measurements of Multiparticle Correlations in d + Au Collisions at 200, 62.4, 39, and 19.6 GeV and p + Au Collisions at 200 GeV and Implications for Collective Behavior
Phys. Rev. Lett., Vol. 120, 062302

A-165
S. B. Yang, et al.
First Determination of the Level Structure of an sd-Shell Hypernucleus, 19 F
Phys. Rev. Lett., Vol. 120, 132505

A-166
T. Xie, et al.
Neutron Spin Resonance in the 112-Type Iron-Based Superconductor
Phys. Rev. Lett., Vol. 120, 137001

A-167
H. Kohri, et al.
Differential Cross Section and Photon-Beam Asymmetry for the $\gamma^* p \rightarrow n – A + (1232)$ Reaction at Forward π – Angles for E_{γ}=1.5–2.95 GeV
Phys. Rev. Lett., Vol. 120, 202004

A-168
C. Kachulis, et al.
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
Phys. Rev. Lett., Vol. 120, 221301

A-169
T. Xie, et al.
Odd and Even Modes of Neutron Spin Resonance in the Bilayer Iron-Based Superconductor CaKFe4As4
Phys. Rev. Lett., Vol. 120, 267003

A-170
K. Kurashima, et al.
Development of Ferromagnetic Fluctuations in Heavily Overdoped (Bi,Pb)2Sr2CuO6+δ Copper Oxides
Nuclear magnetic field in solids detected with negative-muon spin rotation and relaxation

A-172 K. Abe, et al.
Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 1021 Protons on Target

A-173 A. Adare, et al.
Pseudorapidity Dependence of Particle Production and Elliptic Flow in Asymmetric Nuclear Collisions of p + Al, p + Au, d + Au, and 3He + Au at √sNN = 200 GeV

Magnetic excitations in metallic antiferromagnets Fe0.5Mn0.5 and Fe0.7Mn0.3
Physica B, Vol. 551, 21-23

A-175 N. L. Yamada, et al.
In-situ measurement of phospholipid nanodisk adhesion on a solid substrate using neutron reflectometry and atomic force microscopy
Physica B, Vol. 551, 222-226

Anomaly of structural relaxation in complex liquid metal of bismuth - Dynamic correlation function of coherent quasi-elastic neutron scattering -

A-177 M. Nakamura, et al.
Phonon dynamics of NaI investigated by G(r)E analysis

Inelastic neutron scattering study on 4 f -electron multipole system PmTr2X20 (Tr : transition metal, X : Al and Zn)

A-179 M. Matsuura, et al.
Magnetic and thermodynamic studies on the charge and spin ordering in the highly hole-doped La2+xSn1-xCoO4
Physica B, Vol. 536, 338-341

A-180 K. Nakajima, et al.
High-energy magnetic excitations in lightly oxygen-doped lanthanum nickel oxides
Physica B, Vol. 551, 142-145

Nuclear magnetic field in solids detected with negative-muon spin rotation and relaxation
Physica B, Vol. 551, 21-23

Magnetic excitations in metallic antiferromagnets Fe0.5Mn0.5 and Fe0.7Mn0.3
Physica B, Vol. 551, 21-23

A-183 Y. Sakaguchi, et al.
Amorphous Ge20 S80 Films: Case of Pre-amorphous Ge20 S80 Films: Case of Pre-amorphous Ge20 S80 Films: Case of Pre-
Physica B, Vol. 551, 21-23

Performances of oscillating radial collimator for the Fermi chopper spectrometer

Recent progress on practical materials study by Bragg edge imaging at J-PARC

Protective action of trehalose and glucose on protein hydration shell clarified by using X-ray and neutron scattering
Physica B: Cond. Matter, Vol. 551, 426-430

Temperature Dependence of Structural Disorder in Thermoelectric Clathrate Ba8Al16Ge30

A-188 K. Sakurai, et al.
Hadamard coding of time-of-flight neutron reflectogram at grazing incidence

Protective action of trehalose and glucose on protein hydration shell clarified by using X-ray and neutron scattering
Physica B: Cond. Matter, Vol. 551, 426-430

A-190 M. Mizusawa, et al.
An electrochemical cell with vertical geometry for neutron reflectivity measurements

Anomalous behavior of Neutron and Antineutrino Oscillations by the T2K Experiment with 2.2 1021 Protons on Target

Effect of gauge volume on strain measurement in rock materials using time-of-flight neutron diffraction

A-193 M. Mitsuhashi, et al.
Relatively thick (few micrometers) film structure estimated by back-incidence neutron reflectometry
Physica B: Cond. Matter, Vol. 551, 426-430

A-194 A. Adare, et al.
Effect of gauge volume on strain measurement in rock materials using time-of-flight neutron diffraction

Hadamard coding of time-of-flight neutron reflectogram at grazing incidence

Recent progress on practical materials study by Bragg edge imaging at J-PARC

A-197 M. Narita, et al.
Current flow of neutron reflectometry in thin-layer silica coating: Ionic liquid deuteration and neutron reflectivity analysis

A-198 A. Adare, et al.
Effect of gauge volume on strain measurement in rock materials using time-of-flight neutron diffraction

Z-Code for electron/nuclear density distribution in Z-MEM, Maximum Entropy Method software for electron/neutron density distribution in Z-Code
Physica B: Cond. Matter, Vol. 551, 426-430
A-200
T. Kai, et al.
Characteristics of the 2012 model lithium-6 time-analyzer neutron detector (LiTA12) system as a high efficiency detector for resonance absorption imaging
Physica B: Cond. Matter, Vol. 551, 496-500

A-201
H. Iwase, et al.
Installation of a high-resolution position-sensitive scintillation detector in the small and wide angle neutron scattering instrument (TAIKAN), MLF, J-PARC

A-202
Y. Seki, et al.
Effect of upstream beam collimation on neutron phase imaging with a Talbot-Lau interferometer at the RADEN beam line in J-PARC

A-203
P. Wu, et al.
Crystal structure of high-performance thermoelectric materials by high resolution neutron powder diffraction
Physica B: Cond. Matter, Vol. 551, 64-68

A-204
S. Lee, et al.
Weak-ferromagnetism of CoF3 and FeF3

A-205
H. Kumada, et al.
Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba
Plasma Fusion Res., 13(9), 2406006-2406006

A-206
H. Takei, et al.
Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC
Plasma Fusion Res., Vol. 13, 2406012

A-207
F. Maekawa, Transmutation Experiment Facility design Team
J-PARC transmutation experimental facility program

B-001
T. Nakamura, et al.
A sub-millimeter spatial resolution scintillation neutron detector for time-of-flight neutron diffraction imaging
2018 IEEE NSS and MIC, conference record, N07-197

B-002
T. Okuda, et al.
Schottky specific heat of the lightly Mn-substituted electron-doped SrTiO3
AIP Advances, Vol. 8, 101339

B-003
K. Shinto, et al.
Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films
Sci. Rep., Vol. 8, 8741

B-004
T. Yokoo, et al.
Present status of the J-PARC cesiated RF-driven H– ion source

Conference Reports and Books

B-001
T. Nakamura, et al.
A sub-millimeter spatial resolution scintillation neutron detector for time-of-flight neutron diffraction imaging
2018 IEEE NSS and MIC, conference record, N07-197

B-002
T. Okuda, et al.
Schottky specific heat of the lightly Mn-substituted electron-doped SrTiO3
AIP Advances, Vol. 8, 101339

B-003
K. Shinto, et al.
Unveiling structural, chemical and magnetic interfacial peculiarities in ε-Fe2O3/GaN (0001) epitaxial films
Sci. Rep., Vol. 8, 8741

B-004
T. Yokoo, et al.
Present status of the J-PARC cesiated RF-driven H– ion source
hydrogen ion beam
J. Phys. Conf. Ser., Vol. 1067, no. 6, 072020

B-036
H. Takahashi, et al.
Improvement of motor control system in J-PARC linac and RCS
J. Phys. Conf. Ser., Vol. 1067, no. 6, 072022

B-037
H. Hotchi, et al.
Pulse-by-pulse switching of operational parameters in J-PARC 3-GeV RCS
J. Phys. Conf. Ser., Vol. 1067, no.6, 062013

B-038
T. Tanaka, et al.
High precision measurement of muonium hyperfine structure
J. Phys. Conf. Ser., Vol. 1138, 012008

B-039
C. Trippl, et al.
A New Silicon Drift Detector System for Kaonic Atom Measurements
J. Phys. Conf. Ser., Vol. 1138, 012013

B-040
K. Nakajima, et al.
Recent issues encountered by AMATERAS: A cold-neutron disk-chopper spectrometer
J. Phys. Conf. Ser., Vol. 1021, 012031

B-041
Y. Inamura, et al.
Applications of the differential events reading method at MLF, J-PARC
J. Phys. Conf. Ser., Vol. 1021, 012015

B-042
H. Matsuda, et al.
Measurement of activation cross sections of the target and the proton beam window materials at J-PARC
J. Phys. Conf. Ser., Vol. 1021, 012016

B-043
H. Matsuda, et al.
The measurements of neutron energy spectrum at 180 degrees with the mercury target at J-PARC
J. Phys. Conf. Ser., Vol. 1021, 012017

B-044
H. Matsuda, S. Meigo, H. Iwamoto
The measurements of neutron energy spectrum at 180 degrees with the mercury target at J-PARC
J. Phys. Conf. Ser., Vol. 1021, 012017

B-045
S. Itoh, et al.
Improvement for Neutron Brillouin Scattering Experiments on High Resolution Chopper Spectrometer HRC
J. Phys. Conf. Ser., Vol. 1021, 012028

B-046
R. Kajimoto, et al.
Status report of the chopper spectrometer 4SEASONS
J. Phys.: Conf. Ser., Vol. 1021, 012030

B-047
T. Kai, et al.
Off-gas processing system operations for mercury target vessel replacement at J-PARC
J. Phys.: Conf. Ser., Vol. 1021, 012042

B-048
H. Iwamoto, H. Matsuda, S. Meigo
Shielding analysis of Transmutation Experimental Facility
J. Phys.: Conf. Ser., Vol. 1021, 012049

B-049
M. Teshigawara, et al.
Present fabrication status of spare moderators and reflector in J-PARC spallation neutron source
J. Phys.: Conf. Ser., Vol. 1021, 012061

B-050
T. Aso, et al.
Recovery of helium refrigerator performance for cryogenic hydrogen system at J-PARC
J. Phys.: Conf. Ser., Vol. 1021, 012085

B-051
Y. Miki, et al.
Neutron signal features of Nb-based kinetic inductance detector with 10B converter
J. Phys.: Conf. Ser., Vol. 1054, 012054

B-052
T. Koyama, et al.
Physical characteristics of delay-line current-biased kinetic inductance detector
J. Phys.: Conf. Ser., Vol. 1054, 012055

B-053
Y. Iizawa, et al.
Non-destructive 2-D beam profile monitor using gas sheet in J-PARC LINAC
J. Phys.: Conf. Ser., 072006

B-054
J. Kamiya, et al.
Visualization of proton and electron transfer processes of a biochemical reaction by μSR
JPS Conf. Proc., Vol. 21, 011037

B-055
K. Ninomiya, et al.
Muon Induced X-ray and Gamma-ray Measurements
JPS Conf. Proc., Vol. 21, 011039

B-056
G. Liu, et al.
Supercritical Water Experimental Setup for μSR
JPS Conf. Proc., Vol. 21, 011040

B-057
T. Sumura, et al.
Reduction Effects on the Cu-Spin Correlation in the Electron-Doped T’-Cuprate Pr1.3-xLa0.9Eu0.9Sr2CuO4
JPS Conf. Proc., Vol. 21, 011041

B-058
I. Umegaki, et al.
(Isotope Identification of Lead by Muonic X-ray)
JPS Conf. Proc., Vol. 21, 011042

B-059
M. Mihara, et al.
μSR Study on Hydrogen Behavior in Palladium
JPS Conf. Proc., Vol. 21, 011043

B-060
T. Kiyotani, et al.
Detection of Li in Li-ion Battery Electrode Materials by Muonic X-ray
JPS Conf. Proc., Vol. 21, 011044

B-061
A. D. Pant, et al.
Superstructure Water Experimental Setup for μSR
JPS Conf. Proc., Vol. 21, 011045

B-062
K. Ninomiya, et al.
Isotope Identification of Lead by Muon Induced X-ray and Gamma-ray Measurements
JPS Conf. Proc., Vol. 21, 011046

B-065
G. Yoshida, et al.
Intense Negative Muon Beam of J-PARC
JPS Conf. Proc., Vol. 21, 011047

B-066
G. Yabu, et al.
Extraction System and First Evaluation by Intense Negative Muon Beam of J-PARC
JPS Conf. Proc., Vol. 21, 011048

B-067
G. Liu, et al.
Triglycine and Stopping Sites of Muons in Glycine and Triglycerine
JPS Conf. Proc., Vol. 21, 011049

B-068
K. Ninomiya, et al.
Muon Spin Relaxation of 1.9%Mg alloy
JPS Conf. Proc., Vol. 21, 011050

B-069
A. D. Pant, et al.
Theoretical Calculations of Charge States and Stopping Sites of Muons in Glycine and Triglycerine
JPS Conf. Proc., Vol. 21, 011051

B-070
K. Ninomiya, et al.
μSR Study on Hydrogen Behavior in Palladium
JPS Conf. Proc., Vol. 21, 011052

B-071
A. D. Pant, et al.
Superstructure Water Experimental Setup for μSR
JPS Conf. Proc., Vol. 21, 011053

B-072
T. Kiyotani, et al.
Detection of Li in Li-ion Battery Electrode Materials by Muonic X-ray
JPS Conf. Proc., Vol. 21, 011054

B-073
K. Ninomiya, et al.
Isotope Identification of Lead by Muon Induced X-ray and Gamma-ray Measurements
JPS Conf. Proc., Vol. 21, 011055

B-074
G. Yabu, et al.
Extraction System and First Evaluation by Intense Negative Muon Beam of J-PARC
JPS Conf. Proc., Vol. 21, 011056
Development of Energy-Resolved Neutron Imaging Detectors at RADEN
JPS Conf. Proc., Vol. 22, 011022

B-078
T. Uragaki, et al.
Evaluation of high-frame-rate camera with digital accumulation system combined with neutron color image intensifier for energy resolved neutron imaging
JPS Conf. Proc., Vol. 22, 011027

B-079
M. Segawa, et al.
Spatial Resolution Test Targets Made of Gadolinium and Gold for Conventional and Resonance Neutron Imaging
JPS Conf. Proc., Vol. 22, 011028

B-080
K. Hiroi, et al.
Development of a Polarization Analysis System for Spin-Contrast-Resolved Neutron Imaging
JPS Conf. Proc., Vol. 22, 011030

B-081
T. Kumada, et al.
Development of Dynamic Nuclear Polarization System for Spin-Contrast-Variation Neutron Reflectometry
JPS Conf. Proc., Vol. 22, 11015

B-082
T. Koyama, et al.
Defomration Analysis of Reinforced Concrete using Neutron Imaging Technique

B-083
M. Kumagai, et al.
Convergence Behavior in Line Profile Analysis Using Convolutional Multiple Whole-Profile Software
Materials Research Proc., Vol. 6, 57-62

B-084
Y. Sato, et al.
Critical Conditions of Cold Cracking in High Strength Steel Weld Based on the Local Stress Distribution and Hydrogen Accumulation

B-085
S. Satoh
Development of a Flat-Panel and Resistor-Type Photomultiplier Tube System for High Position-Resolution Two-Dimensional Neutron Detector
PFR, Vol. 13, 2405056

B-086
S. Meigo, H. Iwamoto, H. Matsuda
Cross section measurement in J-PARC for neutronics of the ADS

B-087
S. Saito, et al.
Design of LBE spallation target for ADS target test facility (TEF-T) in J-PARC

B-088
K. Moriyama, et al.
Development of status analysis system based on ELK stack at J-PARC MLF
Proc. of ICALEPCS

B-089
F.A. Mavuso, et al.
Iron oxide-pluronic F127 polymer nanocomposites as carriers for doxorubicin drug delivery system
Proc. of ICRAMS

B-090
F.A. Mavuso, et al.
Synthesis and structural characterization of polymer-magnetic nanocomposites as carriers for drug delivery system
Proc. of ICRAMS

B-091
Recent status of J-PARC rapid cycling synchrotron
Proc. of IPAC2018

B-092
K. Hasegawa, et al.
Performance and status of the J-PARC accelerators
Proc. of IPAC2018 (Internet), 1038-1040

B-093
Y. Kondo, et al.
Re-acceleration of Ultra Cold Muon in J-PARC Muon Facility
Proc. of IPAC2018 (Internet), 5041-5046

B-094
T. Takayanagi, et al.
New design and development for an ultrahigh-voltage short pulse switch power supply
Proc. of EAPPCC

B-095
S. V. Cao
Latest results from T2K
Proc. of EW2018, 259

B-096
S. Meigo
Beam instruments for high power spallation neutron source and facility for ADS
Proc. of H82018, pp., 99-103

B-097
P. Saha, et al.
Status of proof-of-principle demonstration of 400 MeV H− stripping to proton by using only lasers at J-PARC
Proc. of HB2018 (Internet), 422-427

B-098
H. Hotchi,
J-PARC RCS: Effects of emittance exchange on injection painting
Proc. of HB2018, 20-25

B-099
Y. Iwamoto, et al.
Radiation damage calculation in PHITS and benchmarking experiment for cryogenic-sample high-energy proton irradiation
Proc. of HB2018, 116-121

B-100
S. Igarashi,
HIGH-POWER BEAM OPERATION AT J-PARC LINAC
Proc. of HB2018, 147

B-101
M. Tomizawa, et al.
STATUS AND BEAM POWER RAMP-UP PLANS OF THE SLOW EXTRACTION OPERATION AT J-PARC MAIN RING
Proc. of HB2018, 347

B-102
Y. Liu, et al.
60 mA BEAM STUDY IN J-PARC LINAC
Proc. of HB2018, 60

B-103
MEASUREMENT OF EACH 324 MHz MICRO PULSE STRIPPING EFFICIENCY FOR H− LASER STRIPPING EXPERIMENT IN J-PARC RCS
Proc. of IBIC2017 (Internet), 233-236(2017)

B-104
S. I. Meigo, et al.
Profile monitor on target for spallation neutron source

B-105
H. Takei, et al.
Beam extraction by the laser charge exchange method using the 3-MeV linac in J-PARC

B-106
N. Hayashi, et al.
ANALYSIS OF INTERLOCKED EVENTS BASED ON BEAM INSTRUMENTATION DATA AT J-PARC LINAC AND RCS
Proc. of IBIC2018, 219-223

B-107
K. Nakayoshi, et al.
DEVELOPMENT OF AN EXPERT SYSTEM FOR THE HIGH INTENSITY NEUTRINO BEAM FACILITY AT J-PARC
Proc. of IBIC2018, 154

B-108
K. Sakashita, et al.
UPGRADE OF THE MACHINE PROTECTION SYSTEM TOWARD 1.3MW OPERATION OF THE J-PARC NEUTRINO BEAMLINE
Proc. of IBIC2018, 18

B-109
S. Cao, et al.
OPTICAL SYSTEM OF BEAM INDUCED FLUORESCENCE MONITOR TOWARD MW BEAM POWER AT THE J-PARC NEUTRINO BEAMLINE
Proc. of IBIC2018, 505

B-110
M. Friend
BEAM PARAMETER MEASUREMENTS FOR THE J-PARC HIGH-INTENSITY NEUTRINO EXTRACTION BEAMLINE
Proc. of IBIC2018, 85

B-111
Y. Nakamura, et al.
In Situ Neutron Diffraction Study on Microstructure Evolution During Thermo-Mechanical Processing of Medium Manganese Steel
Proc. of ICOMAT, 155-158

B-112
N. Tsuchida, et al.
TRIP Effect in a Constant Load Creep Test at Room Temperature
Proc. of ICOMAT, 43-46

B-113
S. Meigo, et al.
MEASUREMENT OF DISPLACEMENT CROSS-SECTION FOR STRUCTURAL MATERIALS IN HIGH-POWER PROTON ACCELERATOR FACILITY
Proc. of IPAC2018, pp., 499-501

B-114
Recent status of J-PARC rapid cycling synchrotron
Proc. of IPAC2018

B-115
K. Hasegawa, et al.
Performance and status of the J-PARC accelerators
Proc. of IPAC2018 (Internet), 1038-1040

B-116
Y. Kondo, et al.
Re-acceleration of Ultra Cold Muon in J-PARC Muon Facility
Proc. of IPAC2018 (Internet), 5041-5046

B-117
R. Kitamura, et al.
RESULTS OF THE FIRST MUON ACCELERATION WITH RADIO FREQUENCY QUADRUPOLE
Proc. of IPAC2018, 1190

B-118
H. Inuma, et al.
THREE-DIMENSIONAL SPIRAL BEAM INJECTION FOR A COMPACT STORAGE RING
Proc. of IPAC2018, 1673

B-119
S. Li, et al.
ADAPTIVE FEEDFORWARD CONTROL DESIGN BASED ON SIMULINK FOR J-PARC LINAC LLRF SYSTEM
Proc. of IPAC2018, 2187

B-120
N. Ogihara, et al.
A NON-DESTRUCTIVE 2D PROFILE MONITOR USING A GAS SHEET
Proc. of IPAC2018, 2190

B-121
T. Toyama, et al.
MEASUREMENT OF TRANSVERSE DIPOLE AND QUADRUPOLE MOMENTS WITH THE BPMS IN THE J-PARC 3-50 BT
Proc. of IPAC2018, 2197

B-122
K. Futatsukawa, et al.
IMPROVEMENT OF THE CHOPPER SYSTEM FOR RF DEFLECTOR AT THE J-PARC LINAC
Proc. of IPAC2018, 2816

B-123
Y. Sato
HIGH POWER BEAM OPERATION OF THE J-PARC RCS AND MR
Proc. of IPAC2018, 2938

B-124
A. Miura, et al.
APPLICATION OF CARBON NANOTUBE WIRE FOR BEAM PROFILE MEASUREMENT OF NEGATIVE HYDROGEN ION BEAM
Proc. of IPAC2018, 5022

B-125
H. Koseki
UPGRADE PLAN OF J-PARC MR - TOWARD 1.3 MW BEAM POWER
Proc. of IPAC2018, 966

B-126
M. Otani, et al.
SIMULATION OF SURFACE MUON BEAM LINE, ULTRASLOW MUON PRODUCTION AND EXTRACTION FOR THE J-PARC G-2/EDM EXPERIMENT
Proc. of IPAC2018, 970
B-138
Wan, T., Obayashi, H., Sasa, T.
Optimization of design of the LBE spallation target at JAEA
Proc. of NUTHOS-12 (USB flash memory), 14 pages

B-140
N. Kamikubota, et al.
DEVELOPMENT OF TRIGGERED SCALER TO DETECT MISS-TRIGGER
Proc. of PCaPAC2018, 213

B-141
S. Kumano
Theoretical perspective for the future experiments on parton densities
Proc. of Science, DIS 2018, 245

B-142
T. Kumada, et al.
Development of closed-cycle dynamic nuclear polarization system for small-angle neutron scattering and neutron reflectometry
Proc. of Science, Vol. 324, 9

B-143
T. Takayanagi, et al.
Development of solid-state switch for power supply with SiC-MOSFET
Proc. of 15th Annual Meeting of PASJ (Internet), 1010-1014

B-144
A. Tokuchi, et al.
Research on accelerator applications of 13 kV high voltage SiC devices
Proc. of 15th Annual Meeting of PASJ (Internet), 1010-1014

B-145
H. Yasuda, et al.
DEVELOPMENT OF MUON SPIN ROTATOR FOR J-PARC MUON g - 2/EDM EXPERIMENT
Proc. of 15th Annual Meeting of PASJ (Internet), 1027-1030

B-146
T. Miyao, et al.
BEAM PROFILE MEASUREMENT USING CARBON NANOTUBE WIRES (3)
Proc. of 15th Annual Meeting of PASJ (Internet), 1031-1034

B-147
Y. Nakazawa, et al.
Commissioning of the diagnostic beam line for the muon RF acceleration with negative hydrogen ion beam derived from the ultraviolet light
Proc. of 15th Annual Meeting of PASJ (Internet), 1047-1050

B-148
Y. Sue, et al.
Development of the good time resolution monitor to measure the longitudinal structure of low-rate muon bunch for J-PARC E34 Experiment
Proc. of 15th Annual Meeting of PASJ (Internet), 1051-1054

B-149
N. Hayashi, et al.
MONITORING OF THE INJECTED BEAM TO THE J-PARC RCS AND BPM DESIGN FOR H0 DUMP LINE
Proc. of 15th Annual Meeting of PASJ (Internet), 1055-1059

B-150
M. Sato, et al.
Status report of the iBNCT accelerator
Proc. of 15th Annual Meeting of PASJ (Internet), 1350-1354

B-151
M. Otani, et al.
BEAM COMMISSIONING OF J-PARC MEBT1 FOR A HIGHER BEAM CURRENT
Proc. of 15th Annual Meeting of PASJ (Internet), 216-219

B-152
R. Kitamura, et al.
Demonstration of the muon RF acceleration with the negative muonium
Proc. of 15th Annual Meeting of PASJ (Internet), 239-243

B-153
K. Hasegawa, et al.
STATUS OF J-PARC ACCELERATORS
Proc. of 15th Annual Meeting of PASJ (Internet), 1131-1321

B-154
Y. Sue, et al.
Development of the good time resolution monitor to measure the longitudinal structure of low-rate muon bunch for J-PARC E34 Experiment
Proc. of 15th Annual Meeting of PASJ (Internet), 1051-1054

B-155
K. Hirano, et al.
DEVELOPMENT OF TRIGGERED SCALER TO DETECT MISS-TRIGGER
Proc. of PCaPAC2018, 213

B-156
K. Hasegawa, et al.
STATUS OF J-PARC ACCELERATORS
Proc. of 15th Annual Meeting of PASJ (Internet), 1311-1321

B-157
T. Shibata, et al.
H- BEAM DYNAMICS IN J-PARC LEBT
Proc. of PCaPAC2018, 192

B-158
S. Tada, et al.
A Search for Possible Deviations from Newtonian Gravity at the nm Length Scale Using Neutron-Noble Gas Scattering
Proc. of NOP2017

B-159
N. Oi, et al.
DEVELOPMENT OF NEW LLRF SYSTEM AT THE J-PARC LINAC
Proc. of LiNAC2018, 233

B-160
J. Y. Yoon, et al.
PRESENT STATUS AND FUTURE UPGRADES OF THE J-PARC RING RF SYSTEMS
Proc. of iPAC2018, 974

B-161
T. Takayanagi, et al.
Development of closed-cycle dynamic nuclear polarization system for small-angle neutron scattering and neutron reflectometry
Proc. of Science, DIS 2018, 245

B-162
T. Shibata, et al.
DEVELOPMENT OF THE NEW SPILL CONTROL DEVICE for J-PARC MR
Proc. of PCaPAC2018, 192

B-163
T. Shiikata, et al.
NUMERICAL AND EXPERIMENTAL STUDY OF H- BEAM DYNAMICS IN J-PARC LEBT
Proc. of LiNAC2018, 519

B-164
S. Tada, et al.
A Search for Possible Deviations from Newtonian Gravity at the nm Length Scale Using Neutron-Noble Gas Scattering
Proc. of NOP2017
B-157
T. Shibata, et al.
Status of development on LaB6 filament multi-cusp ion source for IBNCT
Proc. of 15th Annual Meeting of PASJ (Internet), 385-387

B-158
Y. Kondo, et al.
Low power test of an L-band RFQ
Proc. of 15th Annual Meeting of PASJ (Internet), 421-424

B-159
S. Lim, et al.
An improvement of compact pulsed power supply for ion source using 13kV-SiC-MOSFET
Proc. of 15th Annual Meeting of PASJ (Internet), 488-489

B-160
T. Watanabe, et al.
Development of beam energy position monitor system for RIKEN superconducting acceleration cavity
Proc. of 15th Annual Meeting of PASJ (Internet), 49-54

B-161
J. Kamiya, et al.
Upgrade of vacuum chamber at RCS beam injection area aimed at lower radiation and maintainability increase
Proc. of 15th Annual Meeting of PASJ (Internet), 645-648

B-162
PROGRESS STATUS OF PROOF-OF-PRINCIPLE DEMONSTRATION OF 400 MeV H- LASER STRIPPING AT J-PARC 3-GeV RCS
Proc. of 15th Annual Meeting of PASJ (Internet), 806-810

B-163
K. Ohtsuki, et al.
Operation Status of the J-PARC H-Ion Source
Proc. of 15th Annual Meeting of PASJ (Internet), 889-892

B-164
Y. Nakazawa, et al.
Performance test of Inter-digital H-mode drift-tube linac prototype with alternative phase focusing for muon linac
Proc. of 15th Annual Meeting of PASJ (Internet), 904-908

B-165
H. Takahashi, et al.
Standardization of Stepping Motor Control System in J-PARC Linac and RCS
Proc. of the 15th Annual Meeting of PASJ, 1105-1108

B-166
K. Akutsu, et al.
Development of new waterproof thin-layers for the magnetic alloy core and structural study by neutron reflectometry
Proc. of the 15th Annual Meeting of PASJ, 1198

B-167
H. Hotchi, et al.
J-PARC RCS: Effects of nonlinear field components of injection bump magnets on circulating beam

B-168
Chromaticity effects on head-tail instabilities for broadband impedance using two particle model, Vlasov analysis, and simulations
Proc. of the 15th Annual Meeting of PASJ, THP030

B-169
E. Yanaka, et al.
The Improvement of forced synchronous trip system of bump magnet power supplies
Proc. of the 15th Annual Meeting of PASJ, WEPO78

B-170
K. Miura, et al.
MAGNET POWER SUPPLY CALIBRATION WITH A PORTABLE CURRENT MEASURING UNIT AT THE J-PARC MAIN RING
Proc. of the 15th Annual Meeting of PASJ, 1015

B-171
H. Yasuda, et al.
DEVELOPMENT OF MUON SPIN ROTATOR FOR J-PARC MUON g - 2/EDM EXPERIMENT
Proc. of the 15th Annual Meeting of PASJ, 1027

B-172
T. Miyao, et al.
BEAM PROFILE MEASUREMENT USING CARBON NANOTUBE WIRES (3) - BEAM PROFILES IN HIGH ENERGY PART IN LINAC -
Proc. of the 15th Annual Meeting of PASJ, 1031

B-173
M. Okada, et al.
DUALIZE OF INTRA-BUNCH FEEDBACK SYSTEM IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 1044

B-174
Y. Nakazawa, et al.
COMMISSIONING OF THE DIAGNOSTIC BEAM LINE FOR THE MUON RF ACCELERATION WITH H- ION BEAM DERIVED FROM THE ULTRAVIOLET LIGHT
Proc. of the 15th Annual Meeting of PASJ, 1047

B-175
Y. Sue, et al.
J-PARC E34 EXPERIMENT: DEVELOPMENT OF THE GOOD TIME RESOLUTION MONITOR TO MEASURE THE LONGITUDINAL STRUCTURE OF LOW-RATE MUON BUNCH
Proc. of the 15th Annual Meeting of PASJ, 1051

B-176
K. Agari, et al.
TEMPERATURE MEASUREMENT OF BEAM DUMP AT J-PARC HADRON EXPERIMENTAL FACILITY
Proc. of the 15th Annual Meeting of PASJ, 1065

B-177
T. Sugimoto, et al.
MEASURES AGAINST BEAM LOSS DUE TO RESIDUAL MAGNETIZATION OF FERRITE FOR FAST EXTRACTION KICKER MAGNET OF J-PARC MAIN RING
Proc. of the 15th Annual Meeting of PASJ, 1082

B-178
Y. Tajima, et al.
DEVELOPMENT OF EPICS-BASED SOFTWARE OF TRIGGERED SCALER
Proc. of the 15th Annual Meeting of PASJ, 1091

B-179
K. Sato, et al.
DEMONSTRATIVE APPLICATIONS OF TRIGGERED SCALER IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 1095

B-180
T. Soma, et al.
APPLYING OF SYSTEM INVARIANT ANALYSIS TECHNOLOGY (SIAT) TO J-PARC ACCELERATOR SYSTEM
Proc. of the 15th Annual Meeting of PASJ, 114

B-181
Y. Kawabata, et al.
EXPERIMENTAL APPLICATION OF POSITIONING SENSOR NETWORK SYSTEM AND DISASTER PREVENTION APP IN J-PARC
Proc. of the 15th Annual Meeting of PASJ, 119

B-182
M. Uota, et al.
AFTER 10 YEARS, IS THERE ANY AGING DETERIORATION OF VACUUM SYSTEM AT J-PARC MR?
Proc. of the 15th Annual Meeting of PASJ, 1190

B-183
M. Otani, et al.
BEAM COMMISSIONING OF J-PARC MEBT FOR A HIGHER BEAM CURRENT
Proc. of the 15th Annual Meeting of PASJ, 216

B-184
Y. Sugiyama, et al.
THE FEEDBACK SYSTEM FOR THE LONGITUDINAL COUPLED BUNCH OSCILLATION IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 220
B-185
Y. Kurimoto, et al.
EVALUATION OF SLOW-EXTRACTED BEAM QUALITY WITH REAL-TIME BETATRON TUNE CORRECTION USING MAGNET CURRENT AT J-PARC MAIN RING
Proc. of the 15th Annual Meeting of PASJ, 225

B-186
Y. Fukao, et al.
MEASUREMENT OF PROTON BEAM PROFILE AT 8 GEV ACCELERATION COMMISSIONING FOR THE J-PARC COMET EXPERIMENT
Proc. of the 15th Annual Meeting of PASJ, 231

B-187
M. Tomizawa, et al.
8GeV-SLOW EXTRACTION TEST FOR MUON ELECTRON CONVERSION SEARCH EXPERIMENT
Proc. of the 15th Annual Meeting of PASJ, 235

B-188
R. Kitamura, et al.
DEMONSTRATION OF THE MUON RF ACCELERATION WITH THE NEGATIVE MUONIUM
Proc. of the 15th Annual Meeting of PASJ, 239

B-189
M. Shirakata, et al.
RADIATION MONITORING IN THE DOWNSTREAM AREA OF J-PARC MR COLLIMATORS
Proc. of the 15th Annual Meeting of PASJ, 267

B-190
R. Muto, et al.
BEAM COMMISSIONING OF SLOW EXTRACTION AT J-PARC MAIN RING
Proc. of the 15th Annual Meeting of PASJ, 305

B-191
K. Hara, et al.
STATUS REPORT OF DEVELOPMENT OF SECOND HARMONIC RF SYSTEM IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 312

B-192
Y. Morita, et al.
FUSE ARCING TEST FOR CAPACITOR BANK OF MAIN MAGNET POWER SUPPLY IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 319

B-193
Y. Arakaki, et al.
AN IMPROVEMENT AND HIGH VOLTAGGE TEST OF TITANIUM-ESS IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 329

B-194
T. Yasui, et al.
MEASUREMENTS OF TUNE SHIFTS BY THE SPACE CHARGE EFFECT IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 338

B-195
H. Watanabe, et al.
DESIGN OF BEAM WINDOW MADE OF BERYLLIUM AT J-PARC HADRON FACILITY
Proc. of the 15th Annual Meeting of PASJ, 388

B-196
H. Watanabe, et al.
DESIGN OF BEAM WINDOW MADE OF BERYLLIUM AT J-PARC HADRON FACILITY
Proc. of the 15th Annual Meeting of PASJ, 388

B-197
M. Furusawa, et al.
THE SPEEDUP FOR THE MACHINE PROTECTION SYSTEM ON THE RF ACCELERATING SYSTEM IN J-PARC MAIN RING
Proc. of the 15th Annual Meeting of PASJ, 480

B-198
D. Naito, et al.
PERFORMANCE ESTIMATION OF A NEW POWER SUPPLY WITH HIGH REPETITION RATE OPERATION IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 494

B-199
K. Okamura, et al.
DEVELOPMENT OF A PULSED POWER SUPPLY UTILISING 13 KV CLASS SIC-MOSFETS
Proc. of the 15th Annual Meeting of PASJ, 504

B-200
T. Shimogawa, et al.
DEVELOPMENT OF CHARGING CONTROL FOR FLOATING CAPACITOR METHOD
Proc. of the 15th Annual Meeting of PASJ, 508

B-201
T. Toyama, et al.
BEAM SIZE MEASUREMENT WITH THE BPMS COUPLING BEAM FOR MRI SIZED COMPACT SPIRAL BEAM INJECTION SCHEME WITH X-Y DEVELOPMENT OF THREE-DIMENSIONAL
Proc. of the 15th Annual Meeting of PASJ, 537

B-202
S. Meigo, et al.
MEASUREMENT OF DISPLACEMENT CROSS SECTION OF PROTON FOR 0.4 - 3 GEV
Proc. of the 15th Annual Meeting of PASJ, 549

B-203
K. Okamura, et al.
A CONSIDERATION ON THE TRANSFER FUNCTION BETWEEN RF FIELD AND SLOW EXTRACTION SPILL IN THE MAIN RING OF J-PARC
Proc. of the 15th Annual Meeting of PASJ, 558

B-204
K. Satou
GAMMA RAY IRRADIATION TEST OF PROTOTYPE CURCUIT OF THE PHOT-OIODE BASED BEAM LOSS MONITOR FOR J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 569

B-205
N. Kamikubota, et al.
DEVELOPMENT OF SLOW-SAMPLING DIGITIZER FOR J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 587

B-206
A. Kobayashi, et al.
BUNCH TRAIN TUNE SHIFT STUDY FOR HIGHER BEAM POWER AT J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 60

B-207
A. Toyoda, et al.
DEVELOPMENT OF DATA ARCHIVE SYSTEM FOR J-PARC HADRON BEAMLINE(3)
Proc. of the 15th Annual Meeting of PASJ, 601

B-208
T. Kimura, et al.
REAL-TIME AND DETAILED PROVISION OF ACCELERATOR OPERATION INFORMATION FROM THE J-PARC ACCELERATOR CONTROL LAN TO THE J-PARC OFFICE LAN
Proc. of the 15th Annual Meeting of PASJ, 613

B-210
T. Michikawa, et al.
DEVELOPMENT OF WEB BASED ELECTRONIC LOG AND PICTURE LOG SYSTEMS
Proc. of the 15th Annual Meeting of PASJ, 617

B-211
H. Inuma, et al.
DEVELOPMENT OF THREE-DIMENSIONAL SPIRAL BEAM INJECTION SCHEME WITH X-Y COUPLING BEAM FOR MRI SIZED COMPACT STORAGE RING CONFERENCES
Proc. of the 15th Annual Meeting of PASJ, 79

B-212
Y. Morita, et al.
DESIGN OF ACCELERATING CAVITY AND INPUT COUPLER FOR LONGITUDINAL EMITTANCE BLOW-UP IN J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 790

B-213
Y. Hashimoto, et al.
BEAM PROFILE MONITORS FOR SLOW EXTRACTED BEAM USING MULTI-LAYERED GRAPHENE IN THE J-PARC
Proc. of the 15th Annual Meeting of PASJ, 794

B-214
S. Igarashi, et al.
STUDY ON THE BEAM INTENSITY UPGRADE OF J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 799
B-215
H. Harada, et al.
DEVELOPMENT OF LASER SYSTEM FOR A PROOF-OF-PRINCIPLE EXPERIMENT OF LASER STRIPPING INJECTION
Proc. of the 15th Annual Meeting of PASJ, 811

B-216
H. Takahashi, et al.
DEVELOPMENT OF NEW PRODUCTION TARGET AT J-PARC HADRON EXPERIMENTAL FACILITY (2)
Proc. of the 15th Annual Meeting of PASJ, 879

B-217
T. Morishita, et al.
RF DESIGN AND TUNING OF THE J-PARC RFQ USING THREE-DIMENSIONAL MODELING
Proc. of the 15th Annual Meeting of PASJ, 914

B-218
M. Sawamura, et al.
DEVELOPMENT OF HOM COUPLER WITH C-SHAPED WAVEGUIDE
Proc. of the 15th Annual Meeting of PASJ, 934

B-219
Y. Yamamoto, et al.
RESEARCH ON CERAMIC AND COPPER PLATING FOR POWER COUPLERS
Proc. of the 15th Annual Meeting of PASJ, 938

B-220
K. Hasegawa, et al.
R&D STATUS OF 2ND HARMONIC RF CAVITIES WITH FT3M MA CORES AND A VACUUM CAPACITOR FOR J-PARC MR
Proc. of the 15th Annual Meeting of PASJ, 943

B-221
T. Shimagawa, et al.
STATUS OF NEW POWER SUPPLY FOR BENDING MAGNET IN J-PARC MAIN RING UPGRADE
Proc. of the 15th Annual Meeting of PASJ, 992

B-222
R. Kitamura, et al.
Muon acceleration test with the RFQ towards the development of the muon linac
Proc. of the 29th LINAC2018 (Internet), 342-345

B-223
M. Sato, et al.
Commissioning status of the linac for the IBNCT project
Proc. of the 29th LINAC2018 (Internet), 174-176

B-224
Y. Nakazawa, et al.
Prototype of an Inter-digital H-mode drift-tube linac for muon linac
Proc. of the 29th LINAC2018 (Internet), 180-183

B-225
K. Futatsukawa, et al.
Development of new LLRF system at the J-PARC linac
Proc. of the 29th LINAC2018 (Internet), 233-235

B-226
H. Oguri
Approaches to high power operation of J-PARC accelerator
Proc. of the 29th LINAC2018 (Internet), 29-34

B-227
T. Shibata, et al.
Numerical and experimental study of H-beam dynamics in J-PARC LEBT
Proc. of the 29th LINAC2018 (Internet), 519-521

B-228
K. Hasegawa
Operation experiences of the J-PARC linac
Proc. of the 29th LINAC2018 (Internet), 774-777

B-229
Y. Kondo, et al.
Low power measurement of a 1300-MHz RFQ cold model
Proc. of the 29th LINAC2018 (Internet), 794-797

B-230
T. Morishita, et al.
Field tuning of a radio-frequency quadrupole using full 3D modeling
Proc. of the 29th LINAC2018 (Internet), 798-801

B-231
M. Yoshimoto, et al.
Measurement of Radio-activation and Evaluation of Activated Nuclides due to Secondary Particles Produced in Stripper Foil in J-PARC RCS
Proc. of The 29th World Conference of the INTDS

B-232
M. Yoshimoto, et al.
Progress Status of Fabrication of Stripper Foils for 3 GeV RCS of J-PARC in Tokai-site
Proc. of The 29th World Conference of the INTDS

KEK Reports
C-001
T. Maruyama, et al.
12th KEK summer challenge in 2018
KEK Proc. 2018-8

JAEA Reports
D-001
H. Iwamoto, et al.
Assessment of Lead-bismuth-eutectic Leak at ADS Target Test Facility in Transmutation Experimental Facility of J-PARC

D-002
Safety Division
Others

<table>
<thead>
<tr>
<th>E-001</th>
<th>K. Shibata</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Implementation of the dynamics analysis spectrometer DNA; The Pedigree of the backscattering neutron spectrometer neutron network news</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-002</th>
<th>A. Dote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Reviews Butsuri Vol. 73 No. 6, 401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-003</th>
<th>M. Otani, et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Acceleration of Muon for the Realization of Precise Measurements of Muon g–2/EDM Butsuri Vol. 73 No. 8, 564</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-004</th>
<th>H. Suzuki, et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Destructive Bond Stress Evaluation of Bending and Shear Deformed Reinforced Concrete Structure using Neutron Diffraction journal of N.D.I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-005</th>
<th>M. Inagaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Transfer Rates from Muonic Hydrogen Atoms to Gaseous Benzene and Cyclohexane JNRS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-006</th>
<th>M. Tomizawa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-007</th>
<th>M. Otani, et al.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-008</th>
<th>H. Harada, and K. Sakaue</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-009</th>
<th>S. Sato, et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Observation of Dislocation Evolution in Ferritic and Austenitic Stainless Steels under Tensile Deformation by Using Neutron Diffraction Tetsu-to-Hagane</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-010</th>
<th>M. Inagaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Transfer Rates from Muonic Hydrogen Atoms to Gaseous Benzene and Cyclohexane JNRS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-011</th>
<th>M. Tomizawa</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-012</th>
<th>H. Harada, and K. Sakaue</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Observation of Dislocation Evolution in Ferritic and Austenitic Stainless Steels under Tensile Deformation by Using Neutron Diffraction Tetsu-to-Hagane</td>
<td></td>
</tr>
</tbody>
</table>