The 2nd International Advisory Committee Meeting J-PARC on March 10 (Mon) and March 11 (Tue), 2003

J-PARC Muon Science Facility Y. Miyake

• International Workshop on "Future of Muon Science"

(Tsukuba, Japan, 2002, March)

- International Conference on "Muon Spin Rotation, Relaxation and Resonance" (Virginia, USA, 2002, June)
- Workshop on "Muon Science Explored by JPARC "

(JAERI, Japan, 2003, February)

"The 1st MuSAC" (Chaired by Dr. J. M. Poutissou) (Muon Science Experimental Facility Advisory Committee Meeting) (*Tsukuba, Japan, 2003, February*)

Technical Issues of the one year progress

- **Design of MLF Building** related with the Muon Facility considering maintenance
- Graphite Muon Target & Scrapers
 - Static and Dynamic Properties; Stress & Temperature
- Radiation / Ductstreaming for the shield optimization
- Design of the Air Handling System for NO_X, Ar-41 etc Production

KEK Proceedings 2002-2 May 2002 M

INTERNATIONAL WORKSHOP ON FUTURE OF MUON SCIENCE

MARCH 7-9, 2002 at KEK & RIKEN

hosted by KEK (High Energy Accelerator Research Organization) And RIKEN (Institute of Physical and Chemical Research)

International Conference on Muon Spin Rotation, Relaxation and Resonance

Date: June 3-7, 2002 Venue: University Center of the College of William and Mary, in Williamsburg, VA, USA

Workshop on the Muon Science Explored by JAERI-KEK Joint Project (JPARC)

Condensed Matter Research Using µSR as Complementary Technique to Neutron and NMR

Date: February 5 -6, 2003 Venue: Advanced Science Research Center, Japan Atomic Energy Research Institute,

Material and Life Science Experimental Facility

- First floor -

strong focusing on muon target --> φ 24mmrectangular profile on neutron source W130mm/H50mm

MLF Tunnel Structure I (Crossed View)

Heat, DPA, Radioactivity

 Heat generation, DPA, Radioactivity production induced by proton beam and secondary particles are estimated by NMTC/JAM, MCNP and DCHAIN-SP.

Muon Target

- 3.3kW Heat deposit
- Isotropic Graphite ; t=20mm
- Copper frame ; t=40mm
- Titanium layer
 - ; stress absorber
- Thermal conductivity of graphite

Neutron irradiation effect

Static Property

- Temperature max. 1462 degC
- Tensile stress 13MPa strength 37MPa
 Share stress 0.3MPa strength 18MPa
 Compressive stress 40MPa strength 90MPa
- Concentration of stress on Ti layer

Prototype Graphite Target

•

•

SUS Tube Blazed to Mo frame

Cast SUS Tube in Copper

SUS Tube coated with Copper

- Copper Stainless pipe HIP (Hot Isostatic Press)
- Copper Ti & Ti Graphite Silver Blazing in vac.
- Check the bonding X-ray & supersonic

Dynamical Property

- Shock wave 0.6MPa from thermoelasticity
- Thermal transient response
 A No extraordinery gradient
 - 1. No extraordinary gradient of temperature
 - 2. $\Delta T=6 degC/1 pulse$ difference of stress 0.1MPa

Analysis of Accident

- What happens in case of water stop without beam stopping ?
- What degree C is the best for interlock ?
- 20 seconds later
 Copper 300 degree C
 (with water, 100degC)
 Graphite 1470 degree C
- 70 seconds later
 Blazing will melt. (680degC)
 Graphite 1660 degreeC
 Vacuum becomes bad.
- 120 seconds later (Worst case Copper melts down.

Interlock parameter

- •Water speed
- •Copper temperature
- •Graphite temperature
- •Vacuum

Scrapers

- Beam Loss less than 10 % --> 10, & 20 mm Graphite
- No Window
- Installation of Scrapers
- No Significant Effect to the Neutron Source
- Heat generation in Scraper #1 #3.

Radiation shield

• From 10-m upstream to 30-m downstream, we estimate the surface doze on the wall of 3NBT tunnel and so forth, by using MCNPX.

Air Handling System I

Refering to the PSI(> 1MW) System •Supplying cold air –from Maintenance Area •Retrieving –from the 0.2-0.5mFL

No Ventilation will be done, but just circulating air for a while for M1 & M2 Tunnel

Sealing is important

How to Seal

- Exit of the 2dary Line on the wall
- Towards to the tunnel through the concrete blocks
- Boundary of M1 and M2
- Cable Feed Through

Towards to the tunnel through the concrete blocks

Mission of Muon Science

All the Components up to Neutron Source out of 12.2 OKU Yen

A Tentative Schedule of Phase 1

Item	2001	2002	2003	2004	2005	2006	2007	2008	2009
Linac Building									
Linac Accelerator									
3GeV Building									
3GeV Accelerator									
MLF Building									
(Neutron/Muon Building)									
Muon Facility				Muon	Budget				
Proton Beam Line		,,,,,,		- - - - - -					
Muon Target		11111							
Shield		,,,,,,,			:	ШШ			
Air Circulation		,,,,,,							
Cooling Water		//////							
Secondary Line									
Experimental Port		11111		mm	N				
Design Construction Installation Beam Test Open to Users									

• International Workshop on "Future of Muon Science"

(Tsukuba, Japan, 2002, March)

- International Conference on "Muon Spin Rotation, Relaxation and Resonance" (Virginia, USA, 2002, June)
- Workshop on "Muon Science Explored by JPARC "

(JAERI, Japan, 2003, February)

"The 1st MuSAC" (Chaired by Dr. J. M. Poutissou)

(Muon Science Experimental Facility Advisory Committee Meeting)

(Tsukuba, Japan, 2003, February)

Technical Issues of the one year progress

- **Design of MLF Building** related with the Muon Facility considering maintenance
- Graphite Muon Target & Scrapers
 - Prototype Target was successfully made. --> Real test with proton beam!
- Radiation / Ductstreaming for the shield optimization
- Design of the Air Handling System for NO_{X_i} , Ar-41 etc Production

Expecting budget for Phase 2, as soon as possible for the rest of the secondary beam line.