OUTLINE of the K-HALL K.H. Tanaka for NP Facility Construction Team

High Intensity Proton Accelerator Project

Experimental Hall for 50GeV-15 µ A Slow Beam The First (Only One?) KAON FACTORY in the World

SY and K-HALL

Elevation: 2.9m/80m

K1.8 Separated Kaon Beamline

- Double Stage
- 42m 44m
- 4.5msr.% 4.7msr.%
- 60M 70M K⁻ (1.8GeV/c)
- K/ > 1

Technical Issue

Problem is:

- JHF (50GeV) PS: More than 100 times Higher Beam Power than KEK (12GeV) PS.
 - More than 100 times Higher Radiation Dose.
 - More than 100 times Larger Heat Deposit.

How to Handle MW-Class Beam?

For the Stable Operation

- Tight/Enormous Radiation Shield.
- Radiation/Heat Resistant Beam Line Elements.
- Facility Design Oriented for the Maintenance.
 Quick disconnect Devices

Radiation/Heat Resistant Beam line Elements

- High Radiation Resistance
- High Heat Resistance

Natural Solution: Remove Organic Materials from the Beam Line.

Rubber, Plastic, Oil, Paint, and Semiconductors, etc. etc.

2500A Class Mineral Insulation Cable

MI Cable: Completely Inorganic High Power Cable!

Magnet Coil Winding by 60m 2500A HC-MIC

High-Pot. leak test

Coil Winding!

The first coil of 60m-2500A HC-MIC

Heat Up of Beam Dump by 750kW Beam

面(R=1500)からの熱伝達係数を 600W/m2/K とした 熱伝導率を 360w/m/k とした

- Without Water Cooling: Copper melts
- With Water Cooling: Copper Temp. go down to 300

Production target (T1)

Rotating target and water cooling

Thermal evolution by ANSYS (M. Minakawa)

T1 prototype (Y. Yamanoi)

Nickel disk (ϕ 24cm x 6cm^t, 24kg)

Production target (T1)

chematic view of the T1 target

Production target (T1)

chematic view of the whole system

Collimator and Beam Duct

chematic view of the T1 target area

Collimator

Thermal evolution by MARS+ANSYS (H. Takahashi & M. Minakawa

Cu collimator $(1.5m^{H} \times 1.5m^{W} \times 0.2m^{T})$

- Aperture size
 - H=±10 cm (16cm)
 - V=±0.8cm (0.8cm)
- Acceptance
 - x=±50mrad
 - y=±10mrad
- 30cm away from T1

To be optimized

T1 Collimato Configuration

Beam dump must be moved for the future extension!

K-HALL Beam Dump

Iow to move it safely

- Need to be balanced carefully
- Guarantee flatness of the floor

K-HALL Beam Dump

Radiation protection (preliminary)

- 3 H (T_{1/2}=12.3 year) production at the surface of Cu core
 - ~100 Bq/cc/1 month for 11 m³ Volume (Notice: 20 cm thick cooling water)
- Residual dose rate at contact after 1
 year irradiation and 0.5 year cooling
 (KEK safety limit: 500 µSv / day)
 - 90 mSv/12 hr (averaged) at Cu surface (R=0.8-1.0m)
 - 0.12 μSv/12 hr (averaged) at Fe end (Z=7.8-8.0m)
 - 320 μSv/12 hr (averaged) at Fe surface (R=1.8-2.0m)

Beam Dump Housing

Cooling of Beam-Dump Core

STATUS

- Tight/Enormous Radiation Shield.
 Design Completed
- Radiation Resistant Parts/System.
 Almost Ready.
- Heat Resistant Parts/System.
 - Final Stage of Design/R&D.
- Remote Handling System/Maintenance Scenario.
 - Final Stage of Design/R&D.

Construction Schedule at Tokai

Magnet Installation in SY is Scheduled in 2004+

Magnet Installation in KH is scheduled in 2006-

Magnet Transfer Schedule

	2003	2004		-							2005				2006				2007	
	(H15)	(H16)					-1.0		200		(H17)				H18				H19	
		7	8	9	10	11	12	1	2	3	4-6	7-9	10-12	1-3	4-6	7-9	10-12	1-3	4-6	7-9
EVENT		1	-	Entrance I	Bldng OK	SY Comple	stion.		S-HV Fac	ility OK	1.000	Water Purr	ID OK		Water OK		1.		C- Beam	
			1	SY Crane	OK	Magnet Se	t Start!		DC-PS BI	dng OK		KH Crane	ÖK .	1 8	KH Comple	stion				
		-				Layout			Electricity	Bldng OK	-	Rad-frons	Arrive		1	10. T.				
						4			-											
						Tempor	ary AC Ger	n. for SY	1.1											
ad. Facil	ity																			
uppl.	June?	1				SY: Class-	2 Area					KH Class-	2 Area							
						1000								1						
EK-PS E	BEAM										0									
	- marine and a second	Fast Bean	n for K2K			Slow Beam	for Fixed	target Exp	arimants		_									
/ beamlin	e Dismantle	e(28Mags)			-			1.55	2.6		_									
emporal Beam Dump fr		p for EP1																		
Nsmantle	Other Line	s(5Mags)																		
	1	0.01																		
lagnet R	emodel(28	Mags)		**********	*********					-			-							
lagriet R	emodel(5M	lags)												· · · ·						
lagriet R	emodel(5M	lags for ups	stream of K	1.8)											-					
lagnet Pi	urchase(11	Mags)	-				******	********	******			-		-						
	1.5	1.2																		
on Fill U	p 🖶 SY			1																
ayout	2																			
Ingret Se	et @ SY, 2	7Mags)												********	(*)					
est Oper	ration	1.00														*********	********			
	2										_									
				-						-										
lagnet Se	et @ SY Up	stream(5N	fagn)	-												-				
est Oper	nation	0																		
	1																			
_																				
on Fill U	p 10 KH														£					
lagnet Si	et @ KH (12	(Mags)												1			-			
est oper	ation															**********				
arget Se	tup .																			
learn Dur	np Setup			-														-		
lagnet Si	et 🔍 Upsbre	iam of K1.8	(5Mags)		-															
lagnet Se	et @ Downs	tream of K	1.8K20Mags	}																
ihield Set	tup																	_		

Problem: Can K2K be Finished in the summer 2004?

Magnet Collection Project

- The budget situation of the J-PARC/JHF is NOT very good.
- Let us construct the JHF as an international facility/collaboration!
- Let us collect USED magnets from all through the world!!!!
 - Magnets for secondary lines
 - Dipoles
 - Gap: 12 20cm
 - Width: 30 40 cm
 - Length: ~1 m or longer
 - B: ~2T
 - Spectrometers
- Contribution from SLAC, CERN, CEA(Saturne), Tsukuba U, and LANL, BNL.....

- Quadrupoles
 - -Bore: 20 30 cm
 - –Length: ~1 m
 - -B: ~1 Tesla at pole

Magnet Collection Project from Saturne near Paris

2 Spectrometer Systems (SPES-I,II)
40 Q-Mags, 30cm 0.8-1.6mL, 1T@pole
12 D-Mags, 15-20cm Gap, 1-2mL, 2T

SPES-I arrived at KEK from SATURNE

SPES-I(A23) Magnets

Magnet Collection project from CERN, SLAC, Tsukuba

Antiproton Accumulator Ring from CERN Fixed Target Facility Magnets from SLAC Medical Facility Magnets from Tsukuba U.

Radioactive Iron from DURATEC

- 1\$/10t
- 100\$/1t including transport fee.
- 1/10 of Normal Iron
- Max. 2mR at Surface.
- Less than 2nCi/gr (74Bq/gr)
- Nuclear Wastes?
- Scheduling?
- Possible in Japan'

Design & Construction of K-HALL

Hadron Beam-Line Subgroup is Responsible