|
【 概 要 】 
|
T2K実験※1 (東海-神岡間長基線ニュートリノ振動実験、図1 ) 国際共同研究グループ (以下、T2Kコラボレーション) は、反ミュー型ニュートリノから反電子型ニュートリノへのニュートリノ振動について、2014年の実験開始から取得した観測実験データをまとめ、同研究グループが2010年から2013年までの実験で明らかにしたミュー型ニュートリノから電子型ニュートリノへのニュートリノ振動の結果と比較し、ニュートリノと反ニュートリノで、電子型ニュートリノへの出現が同じ頻度では起きない、すなわち、「CP対称性の破れ※2」があることを示唆する結果を得ました。 |
「ニュートリノと反ニュートリノのニュートリノ振動の確率が違う」ということが事実であれば、万物を構成する素粒子の仲間であるクォークでは破れている「CP対称性」がニュートリノでも破れていることを意味するともに、「宇宙の始まりであるビッグバンで物質と反物質が同数生成されたのに、現在の宇宙には反物質はほとんど存在していない」という宇宙の根源的な謎を解明するうえで大きなヒントとなります。 |
当初目標の約20%のデータ量を取得した今回のT2K実験の結果は、「ニュートリノと反ニュートリノの違い」があり得ることを90%の確率で示すものです。T2Kコラボレーションは今後、ニュートリノビームを作る陽子ビームの強度をさらに大きくし、目標のデータ量を当初目標の2.5倍 (現在の約13倍) に引き上げることで、ニュートリノにおける「CP対称性の破れ」を3σ (=有意水準99.7%) の信頼度で検証することを目指します。 |
|
【 背 景 】 
|
宇宙の始まりであるビッグバンでは物質と反物質が同じ数だけ生成されたはずであると考えられています。物質と反物質が合わさると消滅してしまうのに、現在の宇宙には反物質はほとんど存在せず、自然界にはほぼ物質だけが存在している」というパラドックスは、自然界の成り立ちを知る上で未解明の大きな謎の一つです。素粒子物理学では、その理由は物質と反物質になんらかの性質の違いがあるためと考えられており、その性質の違いは「CP対称性の破れ」とよばれ、どの素粒子が宇宙の成り立ちにかかわる「CP対称性の破れ」を持っているのかを解明するのが、最重要な研究課題のひとつとなっています。物質を構成する素粒子12種類のうち「クォーク」という素粒子については、「CP対称性の破れ」が見つかっており、そのメカニズムは小林誠・益川敏英両博士によって理論的に解明され、その正しさが日本における高エネルギー加速器研究機構 (KEK) でのBelle実験と米国でのBaBar実験により証明されました。ただ、「クォークでのCP対称性の破れ」だけでは現在の宇宙の成り立ちを説明するのは難しいとされています。 |
一方、残りの6種類の素粒子である「レプトン※3」については、「CP対称性の破れ」があるかどうかは未解明で、そのうちの3種類の素粒子のニュートリノについては「CP対称性の破れ」が存在する可能性が指摘されています。そのため、日本における大強度陽子加速器施設J-PARCと東京大学宇宙線研究所のスーパーカミオカンデ検出器によるT2K実験と米国の国立フェルミ加速器研究所でのNOvA実験で、加速器で作り出したニュートリノを用いてニュートリノ振動を詳細に調べる実験が進行中です。 |
ニュートリノは、電荷をもたない中性の非常に軽い素粒子で、他の素粒子との反応の仕方の違いから、電子型、ミュー型、タウ型という3種類が存在することがわかっています。ニュートリノは、「ニュートリノ振動」という現象をおこして、長距離を飛行する間に別の種類のニュートリノに変化することが明らかになっています。T2Kコラボレーションは、2013年までに、J-PARCを用いて、陽子ビームから大量にミュー型ニュートリノを生成し (図2) 、295km離れたスーパーカミオカンデ検出器 (図3) で観測する方法によって、ミュー型ニュートリノが電子型ニュートリノに変化するニュートリノ振動 (電子型ニュートリノ出現※4) を世界で初めて直接検出することに成功しました (図4) 。 |
3世代のニュートリノ振動を説明する標準的な理論によると、ニュートリノの「CP対称性の破れ」があるとすれば、この電子型ニュートリノ出現にもその効果が現れると考えられています。具体的には、ニュートリノと、その反物質である反ニュートリノでは、「電子型ニュートリノ出現が起きる確率」に違いが出ると考えられます。T2K実験は、ミュー型ニュートリノを生成して電子型ニュートリノへの変化を測定するだけではなく、反ミュー型ニュートリノを生成して反電子型ニュートリノへの変化を測定することもできます (図5) 。この理論によると、もしニュートリノの「CP対称性の破れ」が存在しなければ、T2K実験での「ミュー型ニュートリノが電子型ニュートリノに変化する確率」と、「反ミュー型ニュートリノが反電子型ニュートリノに変化する確率」は同じになりますが、もし、「CP対称性の破れ」が存在すれば両者に差が生じます。 |
また、「CP対称性の破れ」がない場合にそれぞれの変化が起きる確率は、中国、韓国、フランスで行われている原子炉から発生するニュートリノを観測する実験の結果からも予想することができますが、「CP対称性の破れ」がある場合にT2K実験で観測される実測値は、それとは違う値になると予想されます (図6) 。T2K実験では、2014年より反ニュートリノを生成する実験を開始し、2016年5月までに、ニュートリノデータとほぼ同量の反ニュートリノデータを得ることができ、これまでの全データの解析の最新結果を、8月7日 (日本時間) に米国シカゴで開催される高エネルギー物理学に関する国際会議 (ICHEP) にて公表するに至りました。 |
T2K実験では、2014年より反ニュートリノを生成する実験を開始し、2016年5月までに、ニュートリノデータとほぼ同量の反ニュートリノデータを得ることができ、これまでの全データの解析の最新結果を、8月7日 (日本時間) に米国シカゴで開催される高エネルギー物理学に関する国際会議 (ICHEP) にて公表するに至りました。 |