実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2009/07/06
課題番号 Project No.	装置責任者 Name of responsible person
2008A0021	Yasuhiro Miyake
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
μ SR study of organic antiferromagnet β '-(BEDT-TTF) ₂ IBrCl	D1
実験責任者名 Name of principal investigator	実施日 Date of Experiment
Kazuhiko Satoh	2009/02/11~2009/02/14
所属 Affiliation	
Graduate School of Science and Engineering, Saitama University	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと)

Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.

β'-(BEDT-TTF)₂IBrCl

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

Among the organic systems, superconductivity with the highest transition temperature is realized in β' -(BEDT-TTF)₂ICl₂ [1]. At ambient pressure, β' -(BEDT-TTF)₂ICl₂ shows semiconducting behavior and antiferromagnetic transition at $T_N = 22$ K [2, 3]. As one-dimensional character of the Fermi surface is suggested from the band structure calculation [4], it is considered that the insulating behavior in β' - (BEDT-TTF)₂ICl₂ is due to the strong electron-correlation effect. We have carried out zero-field SR measurements for β' -(BEDT-TTF)₂ICl₂ and detected spontaneous precession signal in the antiferromagnetic state [5]. We also found that the β' -(BEDT-TTF)₂ICl₂ can be metallized by the application of 8-GPa pressure and shows the superconducting transition, T_c , at 14.2 K [1]. This is the highest superconductivity is not clear at present, but antiferromagnetic correlation is considered to play an important role from the similarity of the temperature-pressure phase diagram to those of the well-known κ -phase superconductors.

2. 実験方法及び結果(つづき) Experimental method and results (continued)

In order to understand the nature of superconductivity of β' -(BEDT-TTF)₂ICl₂, it is interesting to study related materials. We carried out muon spin relaxation measurements for isostructual compound β' -(BEDT-TTF)₂IBrCl. This salt is also semiconducting antiferromagnet with $T_N = 19.5$ K and shows a sign of superconducting transition at 8 GPa with $T_c = 7.2$ K [6]. Single crystals of β' -(BEDT-TTF)₂IBrCl were grown by electrochemical oxidation of BEDT-TTF, using (n-Bu)4NIBrCl in tetrahydorofuran. Zero- and longitudinal-field μ SR experiments down to 3.2 K were carried out at D1 port of MLF, J-PARC.

Figure 1 shows zero-field μ SR spectra at paramagnetic and antiferromagnetic states. Spectra in the paramagnetic state are well fitted by the sum of the temperature-independent static Kubo-Toyabe function and time- and temperature-independent Ag background A_{Ag} . Spontaneous muon spin precession signal is observed below the T_N suggesting the bulk nature of the antiferromagnetic state. Spectra in the antiferromagnetic state were fitted by the following formula;

 $A(t) = A_1 \exp(-\lambda t) \cos(2\pi f t + \alpha) + A_{Ag}.$

As shown in Fig. 1, about 3 % of initial asymmetry disappears below the Nèel temperature. Temperature dependence of the precession frequency f is shown in Fig. 2. The precession frequency gradually decreases toward T_N . It is found that μ SR spectra and temperature dependence of precession frequency for β' -(BEDT-TTF)₂IBrCl are similar to those for β' -(BEDT-TTF)₂ICl₂. In order to clarify the relation between magnetism and superconductivity in these salts, further μ SR experiments under high pressure are desired.

references

- [1] H. Taniguchi et al., J. Phys. Soc. Jpn., 72 (2003) 468.
- [2] M. Tokumoto et al., Synth. Met. 19 (1987) 215.
- [3] N. Yoneyama et al., Synth. Met. 86 (1997) 2029.
- [4] H. Kobayashi et al., Chem. Lett. 15 (1986) 89.
- [5] K. Satoh et al., Physica B374-375 (2006) 99.
- [6] K. Uchiyama et al., J. Phys. IV France 114 (2004) 387.

Fig. 1 Zero-field μ SR spectra for β' -(BEDT-TTF)₂IBrCl.

Fig. 2 Temperature dependence muon precession frequency for β '- (BEDT-TTF)₂IBrCl.