実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2010年 5月24日
課題番号 Project No.: 2009B0043	装置責任者 Name of responsible person
実験課題名 Title of experiment: Precise structure determination of	神山崇
newly synthesized Cu(II)(S=1/2) equilateral triangular lattice	装置名 Name of Instrument/(BL No.)
compound above and below the send order structural phase	Super-HRPD (BL-8)
transition temperature of 18K.	実施日 Date of Experiment
実験責任者名 Name of principal investigator	2009/12/15 ~ 2009/12/17
武田定	
所属 Affiliation	
北海道大学 大学院理学研究院 化学部門	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
1. {[Cu ₃ (trz-d2) ₃ (µ ₃ -OD)Cl ₂ ·4D ₂ O] 2D ₂ O} _n (trz-d2=triazolate 重水素化物, C2N3D2) 3.4g	
2. {[Cu ₃ (trz-d2) ₃ (µ ₃ -OD)Br ₂ ·4D ₂ O] 2D ₂ O} _n (trz-d2=triazolate 重水素化物, C2N3D2) 2.6g	
それぞれの試料について、磁化率および熱容量測定で異常が観測された 18K の低温と高温(10K およ	
び 30K)で測定を行った。測定時間は、それぞれ約 10 時間で、10 φ Vanadium セルを使用	
その他測定条件は以下のとうりである	
0.25 <d<2.5å< td=""></d<2.5å<>	
$\Delta d \sim 1e^{-4} \text{\AA}$	
$\Delta d/d < 0.04\%$	

試料1(塩化物)、2(臭化物)ともにほぼ同じ構造をしていることがわかったので、代表例として表1に解析結果を、図2に解析から求められた局所構造を示す。図2には簡潔のため水素原子(重水素原子)は示していないが、解析ではこれらも決定している。このSuper-HRPDによる測定の結果、単結晶X線構造解析では決定できなかった図2BのO1酸素原子に結合したD(水酸イオン)およびO2原子

に結合した二つの D 原子(配位水)の座標も決定すること ができた。また組成式{[Cu₃(trz-d2)₃(µ₃-OD)Cl₂·4D₂O] 2D₂O}_n からは、三角形を構成する 3 つの Cu(II)イオンには 2 つの Cl-イオンと 4 つの D2O 分子が配位出来ると考えられるが、 本実験による中性子回折によりこれらは図 2B に示すように それぞれ 1/3 と 2/3 の確率でランダムに配意していることが 分かった。また配位水の重水素原子の座標も決定することが できた。さらに、図 3 に示す結晶水(O3)による水素結合 構造も見出すことができた。

これらの構造解析データをもとにして、Cu(II)S=1/2 の三 角が作る 3 次元ネットワークの磁気的性質の原著論文をま とめている最中である。

