実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
MLF Experimental Report	2010/8/6
課題番号 Project No.	装置責任者 Name of responsible person
2009B0016	石垣徹
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
Structural analyses of new LiCoO ₂ for lithium-ion batteries	iMATERIA/BL20
実験責任者名 Name of principal investigator	実施日 Date of Experiment
駒場慎一	2010/5/14~2010/5/15
所属 Affiliation	
東京理科大学	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと)

Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
Li _{0.9} CoO ₂	
Li _{0.9} CoO ₂ Li _{0.5} CoO ₂ Li _{0.37} Na _{0.31} CoO ₂	
$Li_{0.37}Na_{0.31}CoO_2$	

2. 実験方法及び結果 (実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons. Layered LiCoO₂ is used as positive electrode materials for commercial lithium-ion batteries. Two different polymorphs of LiCoO₂, thermodynamically stable O3-type and meta-stable O2-type LiCoO₂, are known so far. Very recently we have found that possible new polymorph of LiCoO₂, which has been prepared from OP4-type $Li_xNa_yCoO_2(x < 0.5, y < 0.5)$. For OP4-type $Li_xNa_yCoO_2$, sodium and lithium ions occupy prismatic sites and octahedral sites, respectively, which are stacked alternately along c-axis. In this research proposal, we have examined the ion-exchanged product of OP4-type Li_xNa_yCoO₂, and its reaction mechanism has been studied by ToF neutron diffraction method. When the sodium ions are exchange by the lithium ions, we found that CoO_2 -Li-CoO₂ slabs glide by (2/3, 1/3, 0) because of the difference in the ionic radii and / or distance in the inter-slabs (Figure 1). Detailed structural analysis reveals that this phase can be classified as O4-type LiCoO₂, which is new polymorph of LiCoO₂. It is noted that profiles of all diffraction lines are broadened, except (001)_{hex.} and (110)_{hex.} lines, suggesting that stacking fault exists for O4-type LiCoO₂. To examine the reaction mechanism of O4-type LiCoO2, Li0.5CoO2 has been prepared by the electrochemical extraction of the lithium ions and examined by the neutron diffraction.

2. 実験方法及び結果(つづき) Experimental method and results (continued)

Figure 2 compares neutron diffraction patters of O4-LiCoO₂ and Li_{0.5}CoO₂. Lithium ions were extracted in the electrochemical cells, in which the composite electrodes consisting of LiCoO₂, acetylene black, and PVdF as binder were utilized. Lithium metal was used as a negative electrode, and 1 mol dm⁻³ LiPF₆ dissolved in EC: DMC = 1:1 was used as electrolyte solution. After the lithium extraction process, two new diffraction lines appear beside the $(110)_{hex}$ diffraction line. In order to explain the experimental observation, possible models, which have different stacking sequences, were tested. Figure 3 shows simulated neutron diffraction patterns of O4 and OT[#]4-type models. For the OT[#]4-type model, half of lithium ions are located at distorted tetrahedral sites. This is achieved by the gliding of the plane with (1/3, 1/6, 0) as shown in Figure 4 if no stacking fault is assumed.

Since the $OT^{#}4$ model generates the additional diffraction lines, which are consistent with the observed diffraction patterns, we conclude that O4-type LiCoO₂ changes to the OT#4-type by the lithium extraction. In addition, this phase transition reversibly occurs. O4-type LiCoO₂ was confirmed after the discharging process (lithium insertion to the lattice).

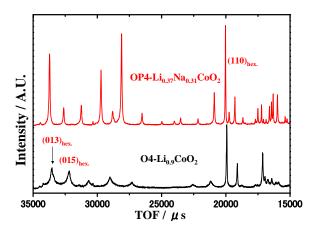


Figure 1. ToF Neutron diffraction patterns of OP4-Li_{0.37}Na_{0.31}CoO₂ and O4-Li_{0.9}CoO₂.

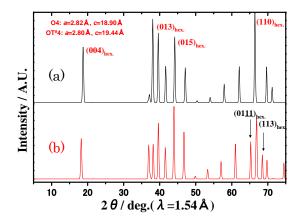


Figure 3. Simulated neutron diffraction patterns of (a) O4-LiCoO₂ and (b) $OT^{#}4$ -LiCoO₂.

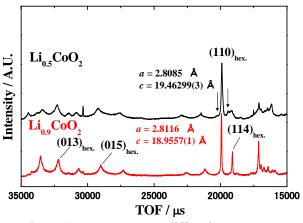


Figure 2. ToF Neutron diffraction patterns of O4-Li_{0.9}CoO₂and Li_{0.5}CoO₂.

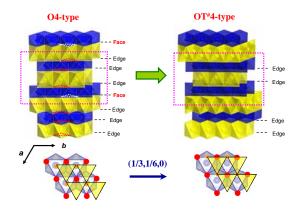


Figure 4. Proposed model of the phase transition from O4-LiCoO₂ to $OT^{#}4$ -Li_zCoO₂.