実験報告書様式(一般利用課題・成果公開利用)

MIE Exportmontal Roport	提出日 Date of Report	
J-PARC WILL Experimental Report	July 4, 2011	
課題番号 Project No.	装置責任者 Name of responsible person	
2010B0025	Takashi Kamiyama	
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)	
Structural study of TbPd _{1-x} Ni _x Al with isostructural phase	BL-08	
transition	実施日 Date of Experiment	
実験責任者名 Name of principal investigator	Feb. 4 – Feb. 6, 2011	
Hideaki Kitazawa		
所属 Affiliation		
National Research Institute for Materials Science (NIMS)		

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.
$TbPd_{1-x}Ni_xAl$ ($x = 0, 0.2, 0.4, 0.6, 0.8, 1.0$) and $TbNi_{1-x}Cu_xAl$ ($x = 0.2, 0.3, 0.4$) samples were
prepared by arc melting stoichiometric mixtures of the pure elements (Tb:3N; Pd: 3N5; Ni: 4N;
Cu:4N; Al:5N) in an argon gas atmosphere. The as-cast buttons were pulverized by an agate
mortal. All powder samples were checked by the X-ray diffraction to be single phase of the
hexagonal ZrNiAl-type structure ($P6-2m$). The powder sample of 8.1 g to 9.9 g was filled in a
vanadium cylinder with 10 mm in outer diameter and 25 mm to 33 mm in length.

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

2-1. Experimental methods

We have performed the powder neutron diffraction measurements using a high-resolution neutron diffractometer, BL-08 (SuperHRPD) installed at the megawatt-class pulsed spallation neutron sources, J-SNS, at the Japanese particle accelerator research complex (J-PARC). The exposure time for data collection in 0.2 MW operation was approximately 5 hours for each sample contained in a cylindrical vanadium cell 10 mm in outer diameter. Rietveld refinements were carried out using the program Z-Rietveld ver. 0.9.36 for time-of-flight neutron powder diffraction analyses.

All the diffraction peaks could be indexed by the the hexagonal ZrNiAl-type structure (P6-2m). When we tried to fit all powder patterns by Z-Rietveld, we could find the tentative structure parameters at room temperature as shown in the Table 1 and 2. The nominal concentration was fixed in the process of Riedveld analysis for simplicity. However, we could not achieve further reduction of

2. 実験方法及び結果(つづき) Experimental method and results (continued)					
Table 1 Tentative structure parameters of $TbPd_{1-x}Ni_xAl$ at room temperature with a single phase fitting.					
X	a (Å)	c (Å)	c/a	R _{wp} (%)	
0	7.19178(2)	3.99425(2)	0.55539	6.3	
0.2	7.11500(0)	4.01527(1)	0.56434	8.0	
0.4	7.04986(1)	4.02518(1)	0.57095	6.6	
0.6	7.01000(0)	4.00235(1)	0.57095	8.8	
0.8	7.017592(6)	3.931178(6)	0.56019	7.1	
1	7.00613(1)	3.87749(1)	0.55344	6.6	
Table 2	Tantativa structura paramata	are of ThNi Cu Al at ro	om tomporature with a	single phase fitting	
Table 2 Tentative structure parameters of $101N_{1-x}Cu_xAT$ at room temperature with a single phase fitting.					
Х	a (A)	c (A)	c/a	R_{wp} (%)	
0	7.00613(1)	3.87749(1)	0.55344	6.6	
0.2	7.022901 (3)	3.898384 (4)	0.56434	5.8	
0.3	6.978217 (7)	3.967262 (9)	0.56852	10.8	
0.4	7.01000(0)	4.00235(1)	0.57095	6.3	

the R-factor. One reason is that the alloying transition element of Ni or Cu for Pd or Ni, respectively, induces the isostructural phase transition (IPT). When we apply the empirical rule that the IPT appears in the forbidden range of c/a from 0.56 to 0.57, IPT should occur at around x = 0.2 and 0.8 in TbPd_{1-x}Ni_xAl and x = 0.2 - 0.3 in TbNi_{1-x}Cu_xAl, respectively. The double peaks of (210) peak in Fig.1 indicate that the 2 phases with low and high c/a ratio clearly coexist in TbPd_{1-x}Ni_xAl. The two phases coexist at around x = 0.3 in TbNi_{1-x}Cu_xAl as shown in Fig.2. We could detect the coexistence of both phases owing to the high resolution neutron diffractometer, BL-08 (SuperHRPD). We need further investigation with different concentration of Ni and Cu to describe the whole phase diagram.

Fig. 1 Ni concentration dependence of a (201) Bragg peak position in $TbPd_{1-x}Ni_xAl$.

Fig. 2 Ni concentration dependence of $(1 \ 0 \ 1)$ and $(2-1 \ 0)$ Bragg peak position in TbNi_{1-x}Cu_xAl.