実験報告書様式(一般利用課題·成果公開利用)

MLF Experimental Report	提出日 Date of Report
	2011/4/25
課題番号 Project No.	装置責任者 Name of responsible person
2010B0078	Stefanus Harjo
実験課題名 Title of experiment	装置名 Name of Instrument/(BL No.)
引張変形中その場中性子回折による TRIP 鋼の変形挙動および	TAKUMI(BL-19)
残留オーステナイト安定性に及ぼす水素の影響解析	実施日 Date of Experiment
実験責任者名 Name of principal investigator	2011/2/9-10
末吉 仁	
所属 Affiliation	
JFE スチール(株)	

試料、実験方法、利用の結果得られた主なデータ、考察、結論等を、記述して下さい。(適宜、図表添付のこと) Please report your samples, experimental method and results, discussion and conclusions. Please add figures and tables for better explanation.

1. 試料 Name of sample(s) and chemical formula, or compositions including physical form.	
供試材は成分および残留γ量の異なる TRIP 鋼を用いた。成分は Fe-0.17C-1.5Si-1.7Mn(γ _R =5.6%,12.4%)	
および Fe-0.17C-1.5Al-2.3Mn(γ _R =14.8%)であり、組織はフェライト、ベイナイト、マルテンサイト、残留オース	
テナイトを含有する複相組織である。図 1 に引張変形中その場中性子回折実験用の平板試験片形状を示	
す。試験片サイズは平行部の長さ 50mm、幅 5mm、厚さ 1mm であ 🛛 🖊 🚬 🗾 🗾	
る。TRIP 鋼の変形挙動および残留オーステナイト安定性に及ぼす	
水素の影響を解析するために、引張試験片に水素を導入した。水素	
の影響が確実に現れるように、陰極水素チャージにより最大 15ppm	
の多量の水素を導入した。水素チャージ後、水素の放出を防ぐため 図1 平板引張試験片形状	
に Zn めっきを施し、試験片内に水素を封入して均一化した。	

2. 実験方法及び結果(実験がうまくいかなかった場合、その理由を記述してください。)

Experimental method and results. If you failed to conduct experiment as planned, please describe reasons.

<実験方法>

引張変形中その場中性子回折実験には、J-PARC の工学 材料回折装置「匠」(BL-19)を用いた。図 2 に示すように、引 張試験片を引張軸方向が入射中性子ビームに対して 45°傾 斜する方向に設置し、検出器を入射ビームに対して N-Bank と S-Bank それぞれ 90°方向に設置することにより、引張軸方 向に対して平行と垂直な格子面の回折強度を測定した。広い 入射波長域を持つパルス中性子を用いて、飛行時間法(TOF 法)で測定することにより、同時に複数の回折ピークを得た。 引張試験はクロスヘッド速度一定で0.1mm/minの低引張速度 条件で実施し、引張変形中の回折強度を連続的に測定した。

図 2 引張変形中その場中性子 回折実験状況

2. 実験方法及び結果(つづき) Experimental method and results (continued)

<実験結果>

図 3 に Si 系 TRIP 鋼 (γ_{R} =5.6%、12.4%)の引張変形挙動 に及ぼす水素の影響を示す。残留 γ 量 12.4%の TRIP 鋼 は変形挙動に及ぼす水素の影響は認められないのに対 して、高強度である残留 γ 量 5.6%の TRIP 鋼は水素導 入により流動応力の増加が認められ、伸びが減少して 早期に破断している。図 4 に Si 系および AI 系 TRIP 鋼 の引張変形挙動に及ぼす水素の影響を示す。Si 系 TRIP 鋼と異なり、AI 系 TRIP 鋼は水素導入により加工硬 化過程で流動応力が低下する特異な現象が認められ る。

図 5 に AI 系 TRIP 鋼の引張軸方向に垂直な α Fe(110) における引張変形中の格子面間隔の変化を示す。水素導 入により格子面間隔が若干低下しているが、大きな差異は 認められない。図 6 に AI 系 TRIP 鋼の α Fe(110)における 引張変形中の半価幅変化量を示す。水素導入により加工 硬化過程での半価幅変化量が低下している。このことは、 AI 系 TRIP 鋼の加工硬化過程での転位の蓄積挙動に水素 が影響を及ぼしている可能性を示唆しており、水素により転 位の増殖が抑制されて加工硬化量が減少したことが流動 応力低下の一因と考えられる。

現在、引張変形中の残留 γ の挙動に及ぼす水素の影響 について解析を進めている。また、リートベルト解析による 残留 γ 量の定量化も実施する予定である。今回良い実験 結果が得られており、未実施の鋼種も含めて今後も継続し て J-PARC で実験を実施したい。

