Depth-resolved Glass Transition below the Free Surface of a Polymer

<u>F.L. Pratt</u>^{1#}, T. Lancaster^{2,3}, P.J. Baker^{2,1}, S.J. Blundell², T. Prokscha⁴, E. Morenzoni⁴, A. Suter⁴, V. Chan⁵, and H.E. Assender⁵

¹ ISIS, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK

² Oxford Physics, Clarendon Laboratory, Oxford OX1 3PU, UK

³ Department of Physics, Durham University, Durham DH1 3LE, UK

⁴ Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

⁵ University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK

corresponding author: francis.pratt@stfc.ac.uk

Intensive studies of polymer films have followed the discovery of significant suppression of the glass transition temperature $T_{\rm g}$ for freestanding films of nanoscale thickness [1]. A local $T_{\rm g}$ that depends on distance from a free surface has often been invoked to explain these results, but there has previously been a lack of experimental techniques able to resolve directly such dependence in an individual sample. Here we demonstrate how low energy muons (LEM)

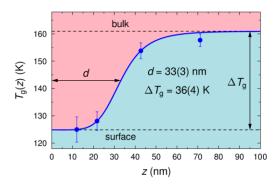


Fig. 1 LEM-measured local T_g near the free surface of a polybutadiene film.

can be used to make depth resolved measurements of the local $T_{\rm g}$ near the surface of a polymer film, which can be used to identify the mechanisms responsible for the local reduction of $T_{\rm g}$. Measurements have recently been obtained for polybutadiene (PB) and previously for polystyrene (PS) [2]. These results are compared and a consistent picture emerges in which a kink diffusion mechanism first proposed by de Gennes [3] operates over a length scale determined by the size of the polymer chain, crossing over at longer distances to a capillary wave mechanism first proposed by Herminghaus [4].

References

- [1] J.L. Keddie, R.A.L Jones and R.A. Cory, Europhys. Lett. 27, 59 (1994).
- [2] F.L. Pratt et al, Phys. Rev. B 72, 121401(R) (2005).
- [3] P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000).
- [4] S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).