Novel Coexistence of Superconductivity with Short-Range Magnetic Order in Electron-Doped High- T_c T'-Cuprates

T. Adachi^{1#}, A. Takahashi², K. M. Suzuki², M. A. Baqiya², T. Konno², T. Takamatsu², M. Kato², I. Watanabe³, A. Koda⁴, M. Miyazaki⁴, R. Kadono⁴, and Y. Koike²

¹ Department of Engineering and Applied Sciences, Sophia University, Tokyo 102-8554, Japan

² Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan

³ Advanced Meson Science Laboratory, RIKEN Nishina Center, Wako 351-0198, Japan

⁴ Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan

a corresponding author: E-mail t-adachi@sophia.ac.jp

In order to investigate the electronic relating to the Ce-non-doped superconductivity in the parent compound of electron-doped high- T_c cuprates with the so-called T' structure [1,2], we have performed muon-spin-relaxation (µSR) and specific-heat measurements $T'-Pr_{1,3-x}La_{0,7}Ce_{x}CuO_{4+\delta}$ (PLCCO) single Ce-non-doped crystals and T'-La_{1.8}Eu_{0.2}CuO_{4+ δ} (LECO) polycrystals. The μ SR spectra of x = 0.10 in PLCCO with $T_c = 27$ K shown in Fig. 1 have revealed that in the ground state, a short-range magnetic order of Cu spins with the volume fraction formed, of 80% is while

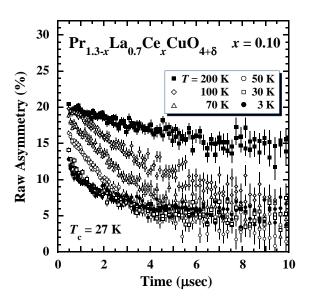


Fig. 1 Zero-field μ SR time spectra of $Pr_{1.3-x}La_{0.7}Ce_xCuO_{4+\delta}$ with x = 0.10.

superconducting volume fraction has been estimated to be more than 60% from the electronic specific heat. The μ SR spectra of LECO with $T_c = 18$ K have revealed that a short-range magnetic order with the volume fraction of 100% is formed in the ground state. These results suggest that in the T'-cuprates including the parent compound, the coexistence of the superconductivity with the short-range magnetic order is an intrinsic feature. These results can be explained in terms of the band picture based on the strong electron correlation [3].

References

- [1] A. Tsukada *et al.*, Solid State Commun. **133**, 427 (2005).
- [2] T. Takamatsu *et al.*, Appl. Phys. Express **5**, 073101 (2012).
- [3] T. Adachi et al., J. Phys. Soc. Jpn. 82, 063713 (2013).