Development of *in situ* Technique for Battery Study using Special Environment Neutron Powder Diffractometer, SPICA

M. Yonemura^{1,2}, K. Mori³, T. Kamiyama^{1,2}, T. Fukunaga³, Y.Ishikawa¹, S. Torii^{1,2}, R. Tomiyasu¹, D. Sulistyanintyas⁴, Y. Onodera³, A. Mitsui⁴, T. Naka⁴, M. Morishima⁴, H. Sugaya⁴, H. Komatsu⁴, M. Hirayama⁵, R. Kanno⁵, N. Kitamura⁶, Y. Idemoto⁶, K. Shimoda⁴, Y. Ukyo⁴, H. Arai⁴, Y. Uchitmoto⁷, and Z. Ogumi⁴

¹Institute of Materials Structure Science, KEK, Tokai, Ibaraki 319-1106, Japan ²J-PARC Center, Tokai, Ibaraki 319-1195, Japan

³Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan ⁴Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji, Kyoto, 611-0011, Japan

⁵Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan ⁶Faculty of Science & Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan

⁷ Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan

a corresponding author: E-mail yone@post.kek.jp

SPICA, a new special environment powder neutron diffractometer was built at BL09 in the Material and Life science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). This is the first instrument dedicated to the study of next-generation batteries in J-PARC and is optimized for *in situ* measurements to clarify the structural changes of battery materials at the atomic level. To make *in situ* measurements of real batteries more fruitful, we need high $\Delta d/d$ resolution with wider d ranges to detect many phases during chemical reaction, high neutron intensity to know the specific reaction process in high speed charge/discharge, low background and a dedicated chemistry area to carry out long-term scheduled experiments with many sets of *on-beam* measurements and off-beam charge-discharge measurements. In the beginning stage of the commissioning, the structural changes of the electrode materials, which are dependent on the lithium content in a commercialized Li-ion battery, were clearly observed. The current status of SPICA will be reported.

Acknowledgement: This study was supported by the RISING project of NEDO. This work was carried out as the S-type project of KEK (Proposal No. 2009S10).