
Crystal Structure of Fe_{1-x}Sr₂YCu_{2+x}O_{6+δ} Magnetic Superconductor

T. Mochiku^{1#}, Y. Hata², A. Hoshikawa³, T. Ishigaki³, H. Yasuoka², and K. Hirata¹

¹National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
²National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan
Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan

a corresponding author: E-mail mochiku.takashi@nims.go.jp

 $FeSr_2YCu_2O_{6+\delta}$ with tetragonal Ba₂YCu₃O₆₊₈-type structure exhibits superconductivity around 60 K when it is properly annealed in a reduced atmosphere and subsequently in an oxidized atmosphere [1]. This compound has atomic order of Cu and Fe along the c-axis (see Fig. 1) and superconductivity on a CuO₂ plane competes antiferromagnetic order on a FeO₅ plane. In $Fe_{1-x}Sr_2YCu_{2+x}O_{6+\delta}$ solid solution. whereas substitution of Cu for Fe on the FeO_s plane prevents antiferromagnetic order, superconducting transition temperature, T_c , decreases with increasing the Cu Neutron powder diffraction study content, x. indicates that the oxygen content, 6+δ decreases with

 $\begin{array}{lll} Fig. & 1. & Crystal & structure & of \\ FeSr_2YCu_2O_{6^{+_{\delta}}}. & & \end{array}$

increasing x. The decrease of $6+\delta$ causes the decrease of carrier concentration on the CuO_2 plane, and resultantly T_c decreases. Mössbauer spectroscopy study revealed that the Fe ion has predominantly 5-fold oxygen coordination [2]. There is a possibility that the change of $6+\delta$ is caused by the absorption and desorption of oxygen at the oxygen site around the Cu ion rather than the Fe ion on the FeO₈ plane.

References

- [1] T. Mochiku, et al., J. Phys. Soc. Jpn. 71, 790 (2002).
- [2] Y. Hata et al., Physica C 417, 17 (2004).