Development Status of NMR System for Polarized ³He Neutron Spin Filter in MLF at J-PARC

K. Sakai^{1#}, T. Oku¹, H. Hayashida², H. Kira², K. Hiroi¹, T. Ino³, K. Ohoyama⁴, M. Ohkawara⁴, K. Kakurai^{5,1}, T. Shinohara¹, K. Oikawa¹, M. Harada¹, K. Aizawa¹, M. Arai¹, Y. Sakaguchi², J. Suzuki²

¹J-PARC Center, JAEA, Tokai, Ibaraki 319-1195, Japan
²Comprehensive Research Organization for Science and Society, Tokai, Ibaraki, 319-1106, Japan

³High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ⁴Institute for Materials Research, Tohoku University, Sendai, Miyagi, 980-8577, Japan ⁵Quantum Beam Science Center, JAEA, Tokai, Ibaraki 319-1195, Japan

a corresponding author: E-mail kenji.sakai@j-parc.jp

A compact and movable ³He neutron spin filter (NSF) based on a spin exchange optical pumping method (SEOP) has been developed in the Materials and Life science experimental Facility (MLF) at J-PARC [1]. The ³He NSF is assumed as a convenient NSF because it is operated immediately after its installation in neutron beam lines without any neutron beam adjustments. For realizing such the NSF, a nuclear magnetic resonance (NMR) system is indispensable in order to monitor the 3 He nuclear spin polarization $P_{\rm He}$ of the NSF frequently regardless of neutron beams. In the MLF, NMR systems based on the adiabatic fast passage (AFP) and pulse NMR methods have been developed. The AFP-NMR system detects the NMR signal V_{AFP} by a pickup coil when the ³He nuclear spins flip while maintaining the high P_{He} by sweeping a static field B_0 as applying radio frequency (RF) field B_{RF} through a RF coil. It enables that the ³He NSF functions as both of the spin polarizer and flipper though the size and shape of glass cells containing in ³He gas are limited by the RF coil and its device structure is often complicated. On the other hand, the pulse NMR system detects the free induction decay signal V_{FID} just after depolarizing the P_{He} slightly by applying the pulsed B_{RF} through the pickup coil. It functions as the flexible $P_{\rm He}$ monitor because it does not need the RF coil and its device structures is simple though it has demerit that the $V_{\rm FID}$ is sensitive to shifts of the B_0 and B_{RF} in comparison with the V_{AFP} .

This paper will report on development status of our NMR systems, and their feasibility test by using neutrons at a neutron beam line 10 (BL10) in the MLF.

References

[1] H. Kira, et al., Physica B 406, 2433 (2011)