Isotope Identification in Nuclear Emulsion Plate

S.Kinbara^{1#}, K.Nakazawa¹, Y.Ichikawa², H.Ueno², J.Yoshida¹, Khin Than Tint¹, Myint Kyaw Soe¹, A.Mishina¹, H.Itoh¹, Y.Endo¹, H.Kobayashi¹

¹Physics department, Gifu University, Gifu 501-1193, Japan ² RIKEN Nishina Center, Saitama 351-0198, Japan

corresponding author: E-mail kinbara@phys.ed.gifu-u.ac.jp

We have carried out the E373 experiment at KEK and detected 7 double-hypernuclear events. Among them, however, only the Nagara event was uniquely identified as $_{\Lambda\Lambda}{}^{6}$ He hypernucleus. To identify nuclide of $\sim 10^{2}$ or more double-hypernuclei in the J-PARC E07 experiment, it is necessary to know nuclear species of daughter isotopes from decay of double-hypernuclei in nuclear emulsion plates.

We are developing a PID method which identifies daughter isotopes by the measurement of energy losses as their track thickness in the emulsion. In Fig.1, it is shown for the relation between dE/dx in the emulsion to track ranges for several isotopes from stopping point. Track width will be measured from stopping point up to $\sim 100~\mu m$ with image processing method. Under the assumption of tracks to be made of many cylinders by length of $1\mu m$, track 'volume' given by width is summed up and expected to present differences as shown in Fig. 2. Recently, we have proposed an experiment for exposing nuclear emulsion to particles $Z = 1 \sim 5$ at RIPS in RIKEN.

In this paper, we present the test result of the above PID method applied for fast protons from heavy double-hypernuclei decay in the emulsion of E373 experiment.

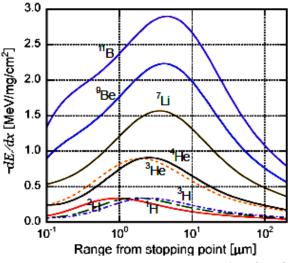


Fig 1. Calculated energy-loss for ¹H, ²H, ³H, ³He, ⁴He, ⁷Li, ⁹Be and ¹¹B corresponding to ranges from their stopping points in nuclear emulsion.

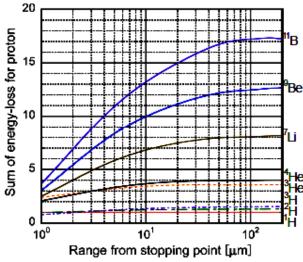


Fig 2. Relative values of sum of energy-loss for ¹H.