Studies on muonium production from silica aerogel with sub-structure for the muon g-2/EDM experiment

G. Beer¹, K. Ishida⁹, M. Iwasaki⁹, S. Kanda⁵, H. Kawai², N. Kawamura⁷, <u>R. Kitamura^{5#}</u>, W. Lee³, S. Lee³, G.M. Marshall¹⁰, Y. Matsuda⁶, T. Mibe⁷, Y. Miyake⁷, S. Nishimura⁵, Y. Oishi⁹, M. Otani⁷, A. Olin¹⁰, S. Okada⁹, N. Saito⁷, K. Shimomura⁷, P.E. Strasser⁷, M. Tabata^{2,8}, D. Tomono⁴, K. Ueno⁷, E. Won³ and J –PARC muon g-2/EDM collaboration

¹Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada

²Department of Physics, Chiba University, Chiba 263-8522, Japan

³Department of Physics, Korea University, Seoul, 136-713, Korea

⁴Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

⁵Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan

⁶Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan

⁷High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan

⁸Japan Aerospace Exploration Agency (JAXA), Kanagawa, 252-5210, Japan

⁹RIKEN Nishina Center, RIKEN, Saitama, 351-0198, Japan

¹⁰TRIUMF, Vancouver, BC, V6T 2A3, Canada

a corresponding author: E-mail rkita@post.kek.jp

An ultra cold muon beam with extremely small transverse dispersion is being developed for the J-PARC muon g-2/EDM experiment (E34)[1]. An incident muon stopped in a silica aerogel sample captures an electron in the sample to form muonium (Mu). The Mu is emitted to vacuum with thermal velocity at room temperature. Ultra slow muons with extremely small energy can be realized by laser ionization of the Mu. A high intensity ultra cold muon beam is required to achieve good statistical precision for the J-PARC g-2/EDM experiment.

A new material with high Mu emission efficiency using the silica aerogel has been produced (Figure 1). Mu production yields from several types of silica aerogel with different momenta of

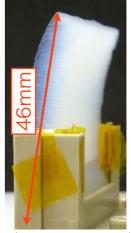


Fig. 1 an aerogel sample with substructures produced by laser irradiation

incident muons have been measured. Measurements were carried out at TRIUMF on the M15 beamline in 2013. In this poster, the analyzed result of the measurement will be presented.

References

[1] J-PARC muon g-2/EDM collaboration, a conceptual design report (2011)