Two Low-Energy Excitations in Superionic Conductor RbAg₄I₅

S. Tahara^{1,2#}, Y. Kawakita³, M. Nakamura³, H. Shimakura⁴, T. Kikuchi³, Y. Inamura³, K. Nakajima³, S. Ohira-Kawamura³, T. Sunakawa¹ and T. Fukami¹

¹Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan

²Research and Utilization Division, Japan Synchrotron Radiation Research Institution (JASRI/SPring-8), Hyogo 679-5198, Japan

³J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan ⁴Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan

a corresponding author: E-mail tahara@sci.u-ryukyu.jp

AgI is well known as a superionic conductor. In the superionic α -phase above 147°C, Ag ions migrate through the b.c.c. lattice formed by I ions. The stoichiometric compounds MAg₄I₅ (M = K, Rb) also show the Ag conduction, and then I ions form the β -Mn type sublattice [1]. In particular, RbAg₄I₅ has high-ionic-conducting phases in the wide temperature range from -157 to 228°C [2]. The ionic conductivity for RbAg₄I₅ is about three times as high as that for KAg₄I₅ at the same temperature. It is proposed that the ionic radius of Rb is larger than that of K and the resultant expansion of the lattice makes Ag diffusion through any bottlenecks within the anion

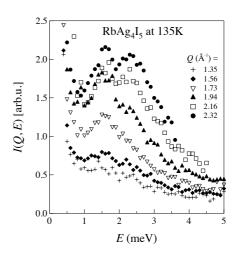


Fig. 1. Energy dependence of inelastic neutron scattering intensity, I(Q, E), for polycrystalline RbAg₄I₅ at 135K sliced at several Q points.

sublattice easier [3]. In this study, the inelastic neutron scattering spectra for RbAg₄I₅ and KAg₄I₅ were measured at the BL14 (AMATERAS : Cold–Neutron Disc–Chopper Spectrometer) in J-PARC [4]. Two low-energy excitations of RbAg₄I₅ observed at around E = 1.5 and 2.5 meV as shown in Fig. 1 will be discussed in the presentation.

References

- [1] B. B. Owens and G. R. Argue, Science 157, 308 (1967).
- [2] S. Geller, Science 157, 310 (1967).
- [3] S. Hull, D. A. Keen, D. S. Sivia and P. Berastegui, J. Solid State Chem. 165, 363 (2002).
- [4] K. Nakajima et al. J. Phys. Soc. Jpn. 80, SB028 (2011).