Thermal Strain in Superconducting Nb$_3$Sn Strand at Cryogenic Temperature

S. Harjo1*, T. Kawasaki1, T. Hemmi2, T. Nakamoto3 and K. Aizawa1

1J-PARC Center, JAEA, Tokai, Ibaraki 319-1195, Japan
2Fusion Res. Dev. Directorate, JAEA, Naka, Ibaraki 311-0193, Japan
3Cryogenics Science Center, KEK, Tsukuba, Ibaraki 305-0047, Japan

*Corresponding author: stefanus.harjo@j-parc.jp

Large superconducting cables consisting of Nb$_3$Sn strands are essential components of the experimental fusion reactor built under the ITER project. [1] The presence of strains in the Nb$_3$Sn is well known to affect superconducting properties [2], and therefore thermal strains at its use conditions (cryogenic temperatures) are necessary to be determined.

Measurements of thermal strains in the superconducting constituent (Nb$_3$Sn phase) in Nb$_3$Sn strand were performed using BL19 Takumi of MLF, J-PARC. Lattice parameters of Nb$_3$Sn phase in Fig. 1(a) change continuously with increasing temperature. To avoid the thermal expansion effect, lattice parameters of the filaments (extracted from the strand) measured at the same temperatures were used to estimate the thermal strains in Nb$_3$Sn phase. As shown in Fig. 1(b), thermal strains for axial direction below 50 K are kept roughly constant at large compressive values, while the values are much lower (the difference is ~0.13%) than that measured at room temperature [3].

References