

高容量Liイオン二次電池用 正極活物質の結晶構造解析

第3回MLFシンポジウム

2012年1月20日@ばらき量子ビームセンター

¹渡邉 学、² 茂筑高士、¹ 伊藤 淳史、¹ 真田 貴志、 ¹大澤 康彦、¹千葉 啓貴、¹秦野 正治、¹堀江 英明

日産自動車(株)総合研究所¹ (独)物質・材料研究機構 超伝導物性ユニット 材料開発グループ²

本日のアウトライン

▶ 背景

✓ 高容量リチウムイオン二次電池の研究開発
 ➢ 目的

- ✓ 固溶体系正極活物質とその課題
- > 実験結果と解析
 - ✓ 結晶構造解析(X線、電子線、中性子線)
 - ✓ 「組成-結晶構造-電気化学特性」の相関
- > まとめ
- > 今後の予定
 - ✓ 積層欠陥を導入した結晶構造モデルの構築
 - ✓ 充放電過程での結晶構造モデルの構築

CO₂排出量削減の取り組み:NGP2010 → NGP2016

あらゆる市場を見据え、多様な技術を開発

(参考) 日産自動車の環境への取り組み HP: http://www.nissan-global.com/JP/ENVIRONMENT/APPROACH/

電動車両 LEAF のスペック ■ バッテリーの性能がEVの性能に直結

NISSAN

リチウムイオンニ次電池への要求性能

■ 高エネルギー密度化=電池内部での可動リチウムイオン量の増加

次世代自動車用高性能蓄電システム技術開発: Li-EADプロジェクト

日産は2007年より同プロジェクトに参画

固溶体系正極活物質

■ 従来の正極材料を大幅に超える充放電容量を有する

【材料のコンセプト】

【充放電容量】

図. LI₂IVINO₃ - LI[INI_{1/2}IVIN_{1/2}]O₂ - LI[INI_{1/3}CO_{1/3}IVIN_{1/3} で構成される組成図.

> Niの2電子反応を利用し、 不活性なLi₂MnO₃を 活性化させる

LiMO₂型活物質の理論値 を越えた高容量(約330 mAh/g)を示す

固溶体系正極活物質の課題

■ 初期構造の同定と、構造・組成・電気化学特性の相関把握

NISSAN

本研究の目的

- 初期結晶構造の同定
- 組成・結晶構造・電気化学特性の相関を調べる

全ての構成元素を含めた結晶構造解析 ×線、電子線、中性子線を相補的に用いる

図、元素ごとの散乱長の模式図

NISSAN

物質との 相互作用

透過能

実験結果:X線回折測定による平均構造の把握

■ 置換量×による大幅な構造変化は認められない

図. 固溶体系正極活物質と母物質Li₂MnO₃のX線回折パターン

実験結果:X線回折測定による平均構造の把握

■ P3,12とC2/mは類似した回折ピークを有する

実験結果: X線回折測定による平均構造の把握 ■ 異なる結晶モデルを用いても解析結果に大きな差はない

(参考) Rietveld**解析には(独)NIMS 泉先生の**Rietan-FPを用いた。

実験結果: XAS測定による局所構造・化学状態把握 ■ 固溶体系正極活物質でのNi価数は2価の状態に近い

Ni-K edge

図. 固溶体系正極活物質のXANESスペクトル

実験結果: XAS測定による局所構造・化学状態把握 ■ 固溶体系正極活物質でのCo価数は3価の状態に近い

Co-K edge

図. 固溶体系正極活物質のXANESスペクトル

実験結果: XAS測定による局所構造・化学状態把握 ■ 固溶体系正極活物質でのMn価数は4価の状態に近い

Mn-K edge

図. 固溶体系正極活物質のXANESスペクトル

実験結果: XAS測定による局所構造・化学状態把握 ■ Ni周辺の局所構造は、三元系正極活物質のものに近い

→ NiとLiが固溶していることを示唆

実験結果: XAS測定による局所構造・化学状態把握 ■ 第二近接Co-Mの強度は、三元系正極活物質のものよりも弱い → Co周りにLiが存在することを示唆

NISSAN

実験結果: XAS測定による局所構造・化学状態把握 ■ 第二近接Mn-Mの強度は、三元系正極活物質のものよりも弱い → Mn周りにLiが存在することを示唆

実験結果: TEMによる局所構造の直接観察 ■ 粒子内で3つの異なる配列がランダムに存在する

NISSAN

実験結果: Cs-STEMによる局所構造の直接観察

■ ランダムな積層欠陥が認められる

図. **固溶体系正極活物質**(x = 0.5)のCs-STEM像

実験結果:ラマン分光測定による振動モードの確認 固溶体系正極活物質の振動モードは、この系の母物質である Li₂MnO₃に近い

図、母物質のラマンスペクトル

固溶体系正極活物質のラマンスペクトル 义

ここまでのまとめ

- ✓ 固相反応法によって合成されたサンプルは仕込み値通りの組成
- ✓ 初期の平均結晶構造の空間群は、P3,12かC2/mに近い
- ✓ 初期のMn、Co、Niの価数は、それぞれ4+、3+、2+の状態に近い
- ✓ Mn, Co周りにLiが多く配置している
- ✓ 遷移金属層内のLiは3倍周期で配置している
- ✓ Li含有の少ない遷移金属層がランダムに挿入されることで、積層欠 陥を起こしている
- ✓ 格子振動モードは、母物質の1つであるLi₂MnO₃に近い

結晶構造モデルと組成式の構築

- 空間群C2/m、遷移金属層内のLiサイトにNiが固溶した構造モデル
 - 従来の112型から213型へ変更した組成式

LiMO₂(*R-3m*)
Li
$$\left(Li_{\frac{1}{5}}Mn_{\frac{3}{5}-\frac{x}{15}}Ni_{\frac{1}{5}-\frac{x}{15}}Co_{\frac{2x}{15}} \right)O_{2}$$

空間群:三方晶, *R-3m*, *Z* = 3 格子定数:*a*~0.28 nm, *c*~1.43 nm

Atom	Site	Occupancy	Atmic Coordination				
Atom		g	x	У	z		
Li(1)	3b	1	0	0	1/2		
Li(2)	3a	0.2	0	0	0		
Mn(1)	3a	3/5-x/15	0	0	0		
Ni(1)	3a	1/5-x/15	0	0	0		
Co(1)	3a	2x/15	0	0	0		
O (1)	6c	1	0	0	$z \sim 0.26$		

空間群:単斜晶, C2/m, Z = 2

恪·	7	定数:	<i>a</i> ~	0.49	nm,	<i>b</i> ~	0.85	nm,	<i>c</i> ~	0.50	nm,	β~	109	(
----	---	-----	------------	------	-----	------------	------	-----	------------	------	-----	----	-----	---

Atom	Site	Occupancy	Atmic Coordination				
		g	x	у	z		
Li(1)	2 <i>b</i>	0.6	0	1/2	0		
Ni(1)	2b	0.4	0	1/2	0		
Li(2)	2c	1	0	0	1/2		
Li(3)	4h	1	0	y ~ 0.66	1/2		
Mn(1)	4g	(9-x)/10	0	y ~ 0.17	0		
Co(1)	4g	x /5	0	<i>y</i> ~ 0.17	0		
Ni(2)	4g	(1-x)/10	0	<i>y</i> ~ 0.17	0		
O(1)	4 <i>i</i>	1	$x \sim 0.22$	0	$z \sim 0.23$		
O (2)	8 <i>i</i>	1	$x \sim 0.25$	$y \sim 0.32$	$z \sim 0.22$		

中性子回折による軽元素を含めた構造解析

■ 回折計としては、茨城県のビームラインBL20を利用

図. MLFのビームライン配置図

NISSAN

(出典) MLF HP: http://j-parc.jp/MatLife/ja/index.html iMATERIA HP: http://j-parc.jp/researcher/MatLife/ja/instrumentation/images/BL20.png

実験結果:中性子回折測定による平均構造の同定

■ 散乱長の違いにより、回折ピークの一部が消失

実験結果:中性子回折測定による平均構造の同定 ■ X線回折測定結果を初期値として、解析を行った

 $R_{\rm wp} = 9.14 \%, R_{\rm p} = 7.02 \%, R_{\rm e} = 4.72 \%,$ $R_{\rm B} = 6.32 \%, R_{F} = 9.92 \%, \chi^{2} = 3.76$

 $R_{\rm wp} = 9.63 \%, R_{\rm p} = 7.08 \%, R_{\rm e} = 3.45 \%,$ $R_{\rm B} = 8.62 \%, R_{F} = 12.51 \%, \chi^{2} = 7.80$

NISSAN

実験結果:中性子回折測定による平均構造の同定

■ 置換量x(Co濃度)の増加に伴い、格子定数が一様に減少

実験結果:中性子回折測定による平均構造の同定

■ 置換量x(Co濃度)の増加に伴い、Li(2b)-O距離が減少
 → 遷移金属層のバックリングが解消される

図. 平均原子間距離の置換量×依存性

図 解析に用いた結晶構造モデル

実験結果:充放電試験による充放電容量の確認 置換量x(Co濃度)の増加に伴い、充放電容量が増加 → 遷移金属層内のLiも容量発現に寄与

充放電容量の置換量×依存性

まとめ

- 固溶体系正極活物質の初期結晶構造は、母物質であるLi₂MnO₃ に類似した構造(空間群: C2/m)である。
- 固溶体系正極活物質において、「組成一構造一電気化学特性」の 相関を見出した。
 - ✓ 置換量×(Co濃度)の増加に伴い、遷移金属層が平滑化
 ✓ 置換量×(Co濃度)の増加に伴い、充放電容量が増加
 ✓ 遷移金属層の平滑化によって、遷移金属層内のLiも充放 電容量の増加に寄与

■ この系における高容量発現機構の1つは、遷移金属層内のLiであ ると推測される。

今後の予定

- 積層欠陥を引き起こす遷移金属層
 - → より正確な結晶モデルの構築
 - 積層欠陥と電気化学特性の確認 \rightarrow

NISSAN

¥

今後の予定

■ 2サイクル目以降の充放電曲線の変化

- → 充放電試験中の結晶構造モデルの構築
- → サイクル耐久性と結晶構造の相関確認

本研究は、独立行政法人新エネルギー・産業技術総合開発機構(NEDO)「次 世代自動車用高性能蓄電システム技術開発(Li-EADプロジェクト)」から委託 を受けて実施致しました。関係各位に深く感謝致します。

SPring-

本研究での粉末X線回折測定は、SPring-8のBLにて実施致しました。 関係各位に深く感謝致します。

本研究での粉末中性子回折測定は、大強度陽子加速器(J-PARC) 物質・生命科学実験施設の茨城県中性子ビームライン(BL20) 材料構造解析装置 (iMATERIA)にて実施致しました。関係各位に深く感謝致します。

高エネルギー加速器研究機構

本研究での中性子回折データを用いた構造解析は、「Z-Rietveld」を用いて実 施致しました。関係各位に深く感謝致します。

本研究でのRietveld解析については、(独)物質・材料研究機構 茂筑高士主 幹研究員にご協力をいただきました。深く感謝致します。

