LaD2の圧力誘起相分離に伴う新規水素化物の形成

原子力機構量子ビーム(播磨)

町田晃彦

原子力機構量子ビーム(東海) 本田充紀*、服部高典、佐野亜沙美 原子力機構量子ビーム(播磨) 綿貫徹、片山芳則、青木勝敏 東大理 小松一生 原子力機構J-PARCセンター

有馬寛**

KEK

大下英敏、大友季哉

Carnegie Institution of Washington

D. Y. Kim

*現 NIMS **現 東北大金研

JAEA

○➢ 本研究の一部は「水素貯蔵材料先端基盤研究事業」のもと、(独)新エネルギー・
▲ 産業技術総合開発機構(NEDO)の委託を受けて行われたものである。

Outline

1. Introduction

• high pressure studies of structural properties of rare-earth metal hydrides

- 2. X-ray diffraction measurement on the phase separation of LaH₂ • decomposition into two fcc phases with different unitcell volumes
- 3. Neutron diffraction measurement on the phase separation of LaD₂
 formation of NaCI-type monohydride, LaD
 hydrogen transfer from T-site to O-site
- 4. Thermodynamics of the phase separation
 first-principle calculations of formation enthalpies and phonon dispersions

5. Summary

(JAEA

Introduction

High pressure for H-M systems

- key technique for studying M-H systems –
- Produce highly densified state

Change the M-H bondings without chemical substitution

Collapse of Westlake-rule (2Å-rule)

Synthesize novel hydrides

(JAE

Synthesis of high density hydrogen storage materials

Hydrogenation reaction of hard hydrogenation materials

Rare-earth Material Hydrides

BS

I-PARC

- Suitable compounds for studying the M-H interaction -

第3回MLFシンポジウム 2012.1.19-20

Intermediate structure bridging hex. and cubic structures of fully occupied hydrides

The O-site H-atoms plays essential roles in the formation of the long period structures.

JAEA

ıBS

Explore transition in metal hydrides accommodating hydrogen atoms partially in the interstitial sites

Hydrogen in FCC metal lattice

Experimental –SR XRD @ SPring-8–

To investigate the variations of metal lattice Diffractometer for Diamond Anvil Cell

BL22XU Exp. Hutch1

Detector

(JAEA

- Imaging Plate (R-AXIS V, Rigaku Co.)
 - Size : 400 × 400 mm² 100 × 100µm²/pixcel

Sample-IP distance: 200mm-730mm

X-rays LaH Pressure marker Pressure medium 100µm Helium···

hydrostaticity

sample

Samples

LaH₂ (40µm*20µm*10µmt) LaD₂ (35µm*25µm*10µmt)

T. Watanuki, et al., Philos. Mag. 87, 2905 (2007).

Phase separation from LaH_2 into $LaH_{2+\delta}$ and LaH_x

A. Machida et al., Phys. Rev. B 83,054103 (2011).Y. Sakurai et al., Solid State Commun. 151, 815 (2011).

X-ray diffraction experiments Additional Bragg spots appeared just outside of the original

ones.

(JAEA

Formation of small-fcc lattice Volume reduction ~ -17%

Ratio of reflection intensities I^s_{hkl} / I^o_{hkl} becomes almost constant above ~14 GPa.

Phase separation!

Pressure induced phase separation of LaH₂

Is the s-fcc phase solid solution phase?

 $LaH_2 \rightleftharpoons (1-\eta)LaH_{2+\delta}$

metallic

(JAE

insulating

+ ηLaHx

metallic?

XRD measurements are unable to determine the H-concentration and occupation sites.

To clarify the H-states after phase separation, high pressure neutron diffraction experiments are performed.

Pressure (GPa) Y. Sakurai *et al.*, Solis State Commun., **151**, 815 (2011).

Confirmation of the isotope effect X-ray diffraction experiments on LaD₂

(LaD₂ powder was prepared by Kojima Lab., Hiroshima Univ.)

- >P-induced phase separation has been observed in LaD₂.
- $> P_{PS}$ is same as the hydride.

JAEA

uBS

Structural changes is similar to the hydride.

H/D substitution does not influence the phase separation.

Experimental –NPD @ MLF, J-PARC– To investigate the hydrogen positions

High Intensity Total Diffractometer (NOVA)

JAEA

JBS

Paris-Edinburgh Press (VX4)

Anvil	single toroidal	double toroidal	
	made of WC	made of sintered diamonds	
P-range	<10GPa	<20GPa	
Sample volume	0.48cm ³	0.14cm ³	
Measurement time	12h for 100kW	15-20h for 200kW	

第3回MLFシンポジウム 2012.1.19-20

Pressure variation of NPD patterns of LaD₂

(JAE

BS

Anvil: double toroidal (sintered diamonds) Gasket: Ti-Zr encapsulating Pressure medium: methanol-ethanol 4:1 mixture

With increase of pressure, the each reflection peaks exhibit no significant broadening.

Pressurize under quasihydrostatic pressure

New reflection peaks appear and their intensities increase

Bragg reflections of small-fcc phase

Formation of NaCI type mono-deuteride

(JAEA

BS

Different concentration with common metal lattice

	LaH	LaH ₂	LaH ₃
Structure		0	
fcc metal lattice			
Occupation sites	O-site	T-site	<mark>O-site</mark> T-site
Nearest neighbor	H ^o -La	H [⊤] -La	H [⊤] -La H ^o -H [⊤]

Different bonds should be made in the different state.

Summary

(JAEA)

JuBS

- LaH₂ (LaD₂) exhibits a pressure-induced phase separation starting at 11 GPa.
- The high pressure neutron diffraction experiments enable to determine the position and occupancy of the hydrogen atoms.
- Mono-hydride with the NaCl-type structure is found for the first time.
 (new phase in the rare-earth metal hydrides!)
- The phase separation is accompanied by the hydrogen transfer from the T-site to O-sites.
- The phase separation and stabilization of mono-hydride are well reproduced by a first-principle calculation.
- Line-up of mono-, di- and tri-hydrides opens a way to study the sitedependent bonding nature of metal hydrides.