希土類単分子磁石の スピンダイナミクス

東大物性研, 奈良女大理^A, 阪大工^B, J-PARCセ^C 古府麻衣子, 梶原孝志^A, 中野元裕^B, 中島健次^C, 河村聖子^C, 菊地龍弥^C, 稲村泰弘^C, 山室修

第3回MLFシンポジウム

単分子磁石(SMM)とは

- ▲ 分子ひとつが磁石のように振る舞う物質群
- ▲ ナノサイズの磁気クラスターがある
- ▲ 履歴現象(保磁力)を示す → 磁気デバイス
- ▲ 基本的に孤立系(有機分子によって磁気 モーメントが隔てられている)
- ◆ 大きな一軸異方性、磁気モーメントが原因 (エネルギー障壁: DS_z²大)
- ▲ 最初のSMM: Mn₁₂-acetate (*S*=10) (1980年) 報告されている殆どのSMMが3d遷移金属原子型

古典的な熱活性過程 熱支援トンネリング過程 純粋なトンネリング過程

Energy

Magnetization Direction

▲ 近年、希土類原子を含むSMMも発見された

大きな磁気モーメント(*L*≠0) エネルギースケールが大きい 少数の磁気イオンでSMMが形成可能

二核錯体希土類SMM

T. Kajiwara et al. (2008)

わずかな配位子の変化によってSMM⇔非SMMと変わる

Table 1. Ground state properties of selected SMMs. \triangle is the spectroscopic energy barrier, \triangle E the activation energy obtained from relaxation measurements. The ligands in the formulae are abbreviated as follows: chp = 6-chloro-2-pyridonate; cit = citrate; tacn = triazacyclononane; dpm = monoanion of dipivaloylmethane; bpy = 2,2'-bipyridine.

	S	Δ [cm ⁻¹]	Δ <i>E</i> [cm ⁻¹]	Reference
[Mn ₁₂ O ₁₂ (O ₂ CMe) ₁₆ (H ₂ O) ₄]	10	45.7 ^[a]	42	[22]–[24]
$[Fe_8O_2(OH)_{12}(tacn)_6]Br_8$	10	22.8 ^[a]	17	[45]
[Fe₄(OMe)₀(dpm)₀]	5	4.5 – 5.1 ^[a,b]	2.4	[37e, 46]
[Ni ₁₂ (chp) ₁₂ (O ₂ CMe) ₁₂ (H ₂ O) ₆ (THF) ₆]	12	6.7 ^[c]	6.3 – 7	[47]
[Ni ₂₁ (cit) ₁₂ (OH) ₁₀ (H ₂ O) ₁₀][Na ₂ (NMe ₄) ₁₄]	3	-	2	[33b]
$[V_4O_2(O_2CEt)_7(bpy)_2][CIO_4]$	3	13.5 ^[c]	-	[48]

3d型SMMでは、

$\Delta E \sim 0.5\text{--}1.0\,\Delta$

△:エネルギー障壁△E:活性化エネルギー

[a] From INS. [b] Different barriers due to different isomers. [c] From magnetic measurements.

R. Basler *et al.* Chem. Phys. Chem. **4**, 910-926 (2003)

磁気モーメント(*J*=6)、一軸異方性 が大きいと期待される希土類で、活 性化エネルギーが小さいのはなぜ? $\tau = \tau_0 \exp(-\Delta E/k_{\rm B}T)$ $\tau_0 = 4.1(6) \times 10^{-8} \text{ s}$ $\Delta E/k_{\rm B} = 16.0(4) \text{ K}$

活性化エネルギーが小さい

Tb-Cu希土類SMM錯体のスピンダイナミクス を明らかにする。

- SMM錯体のエネルギースキームはどうなっているのか?
 → 中性子非弾性散乱 (零磁場下での測定が可能)
- トンネル過程の起源(状態の混成)を探る?
 → スピンハミルトニアンの決定

中性子散乱実験

- ▲ 装置:ディスクチョッパー型分光器 AMATERAS@J-PARC(茨城県東海村)
- SMM試料:錯体1 (TbCuC₁₉D₂₀N₃O₁₆)粉末, ~5g 低分解能測定: E_i = 4.9 meV, 8.3 meV, 16.8 meV, 49.9 meV ΔE/E_i = 2-3%
 高分解能測定: E_i = 3.4 meV, 18.7 meV ΔE/E_i = ~1%
- 非SMM試料:錯体5(TbCuC₃₂D₃₂N₅O₁₃)粉末, ~3.7g 低分解能測定: E_i = 4.9 meV, 8.3 meV, 16.8 meV, 49.9 meV
 ΔE/E_i = 2-3%
 高分解能測定: E_i = 2.7 meV, 5.9 meV, 23.6 meV
 ΔE/E_i = ~1%

回折パターン

$Q-\omega$ map @ 6K (SMM)

高分解能測定(SMM)

→ 状態の混成 (トンネル過程の原因)

トンネル磁化反転

$$\mathcal{H} = \left[DJ_z^2 + E(J_x^2 - J_y^2) + B_2^1 O_2^1 + \dots \right] + J_{ex} \mathbf{J} \cdot \mathbf{S} + A_{hf} \mathbf{J} \cdot \mathbf{I}$$

磁気異方性項(Tb) |*J_z*> ⇔ |*J_z*-1>, |*J_z*-2>, ... |*J_z*, *S_z*> ⇔ |*J_z*-1, *S_z*+1> |*J_z*, *I_z*> ⇔ |*J_z*-1, *I_z*+1>

これらの相互作用によって、|6, *I*_z, -½>と|-6, *I*_z, ½>の状態間の 混成ができる。→トンネル磁化反転の起源

高分解能測定(錯体5)

高分解能測定(錯体5)

1.6meV, 2.8meVの励起とも、分解能よりもブロード
 → Tb-Cu間のexchange coupling
 核スピンとの超微細相互作用

まとめ

▲ SMM錯体 (complex1)

1.7 meV : $|6,1/2\rangle \rightarrow |6,-1/2\rangle \Leftrightarrow E_a/k_B=16K$ $12.4 \text{ meV} : |6,1/2 \rightarrow |5,1/2 \rightarrow$ 高分解能測定を行った結果、ピーク分裂を観測 →核スピンとの超微細相互作用による →状態の混成(トンネル過程の原因) 今後は、磁気緩和現象 ▲ 非SMM錯体 (complex5) (準弾性散乱)について $1.6 \text{ meV} : |0\rangle \rightarrow (|1\rangle - |-1\rangle)/\sqrt{2}$ 調べていきたい。 2.8 meV : $|0\rangle \rightarrow (|1\rangle + |-1\rangle)/\sqrt{2}$ SMM - 容易軸型(oblateな軌道) 非SMM - 容易面型(prolateな軌道)