第3回MLFシンポジウム、IQBRC、東海村、2012

MLFの新展開 -パルス中性子源の現状と今後の展開-

中性子源セクション

二川 正敏

MLFにおける震災

中性子源における震災の影響

建物ユーティリティ:外部電源喪失後、UPS&非常用電源が正常に稼働

水銀ターゲット設備:ターゲット容器シールベローの破損 ターゲット台車の移動

極低温水素設備:UPS起動により、制御システムが正常に動作。 水素の屋外放出、駆動系のインターロックによる停止。 異常圧力降下、水素漏洩など無し。 窒素&ヘリウムタンクの傾斜、屋外供給配管の変形

中性子シャッター:真空ダクト閉止フランジ締結ボルトの緩み

MLF全体制御システム:非常用電源により正常に作動

3NBT:ビームダクト内真空が劣化

トンネル内壁が崩落、トンネル内クレーンの損傷、 冷却水系配管の変形など

May 2011 vr.

項目	4	5		7	8	9	10	11	12	1	2	3
									▼ ビー1	公受入	調整&供	快用運転
◇水銀ターゲット関連	1											
水銀ターゲット容器(1号機⇒3号機交換)	ターゲット容器3号機製作中(継続			売中)		ļ	交換(11月バブリン			<mark>テ</mark> ム試験)		
										4		
水銀ターゲット台車固定装置								固定装置。	攻修			
◇附帯冷却系設備												
1次、2次冷却系作動確認	冷却	□水供給◆	作動試験									
◇ベッセル内機器												
モデレータ、 反射体、水冷遮蔽体など			冷却水循环	睘試験								
◇中性子ビームシャッター設備												
中性子ビームシャッター	破損部品の発注・製作(内装物角)				診ダクト)◆ 交換作業&アライメント							
◇極低温水素設備												
外部精製システム工事、ADS交換					据付工事							
屋外構造物(タンク、配管など)		撤去	土木、基磷	を工事	据付、復旧	工事	単体試験、	精製運転	試運転			
◇3NBT関連												
トンネル内トラバーサクレーン				◆±:	木工事が7丿	月中旬に終	了すると仮	定(終了後	に開始)			
トンネル内機器精密アライメント					♦ IJ=	アック、RC	S,MRとアラ	イメント基準	隼決定			
電磁石絶縁性回復					冷却水循环	景再開後、	。 配管清掃等	※通電試験	験(約1ヶ	月/アラ	ライメント後	发)
最下流セクション真空引き							※10月末調	までM2ライ:	ン真空引	可能を	仮定	

機器の保守作業

モデレータ水素循環系冷凍機内の不純物除去用外部精製 機の取り付け&点検作業

ターゲット容器の交換作業 手順の確認と放射性ガス取扱に関する経験 改良点の確認 照射後試験用試験片取り出し作業

羽賀:水銀ターゲット容器の損傷計測と新型ターゲットへの交換

制御系の改良及び今後の計画

酒井: J-PARC/MLF全体制御システム(MLF-GCS)の運転状況(ポスター)

3NBT電磁石アライメント作業

108個の電磁石の水平垂直アライメント調整作業

モデレータ中性子減速材の開発

大井:デカップラー用Au-In-Cd合金開発 におけるHIP試験速報(ポスター)

復旧後、初ビーム入射 12/22

ビーム軌道調整:12/22

震災の影響でビーム軌道にズレ 的確な調整作業により修正 大強度には再アライメントが必要

復旧後、初ビーム入射 12/22

中性子特性評価試験:12/23 震災前の結果と比べて、遜色無い結果が得られた。

水銀ターゲット診断系

新開発の4倍強度反射率ミラーと構造の工夫により陽子線励起衝撃波を捕らえた!

He vessel

容器壁面の速度応答と高周波成分

出力依存性&水銀キャビテーション由来?の高周波成分が見て取れる!

解析値との比較

陽子線励起熱衝撃モデルの検証

最大衝擊加速度:1500G(MIMTM100G程度、自動車衝突時~10G、地震~0.5G)

陽子線励起圧力波によるピッティング損傷

ー1MWでは水銀容器が数週間で破損する可能性有りー

深さ100ミクロン程度の損傷が発覚

新型容器開発&ビーム平坦化技術

ターゲット高出力化に対応したバブラー付き容器構造を設計し実機を製作

出力上昇計画

まとめ

震災からの復旧を完了し、12月末より 陽子ビーム受け入れを開始 1月24日から供用運転再開

1MWへの高出力化研究開発は不可欠 圧力波低減技術、その場診断技術、照射後試験等

世界最高強度のパルス中性子源が実現