μ⁺SR study on olivine-type Na_{0.7}FePO₄

<u>J. Sugiyama</u>^{1#}, H. Nozaki¹, I. Umegaki¹, M. Harada¹, Y. Higuchi¹, E. J. Ansaldo², J. H. Brewer^{3,2}, Y. Miyake⁴, G. Kobayashi⁵, and R. Kanno⁶

¹ Toyota Central Research & Development Labs., Inc, Nagakute, Aichi 480-1192, Japan ² TRIUMF, Vancouver, BC V6T 2A3, Canada

Dept. of Physics & Astronomy, Univ. of British Columbia, Vancouver, BC V6T 1Z1, Canada
Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan
Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
Dept. of Electronic Chemistry, Tokyo Institute of Technology, Yokohama 226-8503, Japan

a corresponding author: e0589@mosk.tytlabs.co.jp

Among several cathode materials for the Na-ion battery, transition metal polyphosphates would be a promising candidate due to their excellent redox abilities and thermal stability. Nevertheless, the structural, magnetic, and diffusive properties of NaxFePO4 are still not fully clarified so far, although a few work are available [1–3]. Here, we report the result of our initial μ^+ SR study on Na_{0.7}FePO₄ in order to investigate the magnetic and diffusive nature.

ZF- μ^+ SR measurements in TRIUMF revealed the appearance of static magnetic order below $T_{\rm N}\sim60$ K, at which the $\chi(T)$ curve exhibits a sharp maximum due to an antiferromagnetic transition. The wide distribution of the internal magnetic field is probably caused by an inhomogeneous field at muon sites due to a random distribution of the vacant Na sites. On the contrary, the ZF-spectrum obtained in J-PARC is found to change from a low-T static behavior to a high-T dynamic behavior above around 300 K. This is consistent with the fact that Na⁺ ions are extracted from and intercalated into the Na_xFePO₄ lattice, reversibly, while there is no NMR study on Na-diffusion in Na_xFePO₄ due to large Fe moments.

References

- [1] C. M. Burba and R. Frech, Spectrochimica Acta Part A, 65, 44 (2006).
- [2] P. Moreau et al., Chem. Mater. 22, 4126 (2010).
- [3] K. Zaghib *et al.*, J. Power Sources, **196**, 9612 (2011).