Isotope labeling method for depth profiling by neutron diffraction

Akio Mitsui^{1,2}, Yuki Orikasa³, Masao Yonemura⁴, Takashi Kamiyama⁴, Haruno Murayama¹, Hajime Arai¹, Yoshiharu Uchimoto³, Zempachi Ogumi¹

¹Office of Society-Academia Collaboration for Innovation, Kyoto University,
Gokasho, Uji, Kyoto, Japan

² Material Development Div., Toyota Motor Corporation,
1, Toyota-cho, Toyota-city, Aichi, Japan

³ Graduate school of Human and Environmental Studies, Kyoto University,
Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan

⁴ High Energy Accelerator Research Organization, Institute of Materials Structure Science,
203-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki, Japan

a corresponding author: E-mail akio_mitsui@mail.toyota.co.jp

Reaction distribution in lithium ion batteries (LIBs) is a critical problem for high power application such as electric vehicles. We have tried to detect the depth reaction distribution in positive electrodes of LIB. The fabricated composite electrode has the ⁶LiMn₂O₄ and ⁷LiMn₂O₄ layers on the counter electrode side and current collector side, respectively. Thus obtained composite electrode

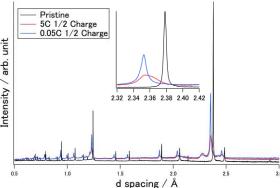


Fig. 1 Neutron diffraction patterns of pristine and charged powder.

was set in a laminated pouch-type cell as a working electrode. The cell was charged and a half of the lithium was extracted; one cell was charged at 0.05 C and the other cell was charged at 5 C. Immediately after the end of the charging process, the cell was disassembled in the glove box and the electrode was taken out, washed and then dried. Fig. 1 shows the neutron diffraction patterns of the pristine (before charging), 0.05C charged and 5C charged powder, showing that the lattice of LiMn₂O₄ shrinks with delithiation [1]. To obtain semi-quantitative information on the reaction distribution, we employed the Rietveld refinement [2-3] of these electrode samples. A reasonable fitting is obtained with the ⁶Li/⁷Li ratio of the pristine powder is 0.80, showing that the ⁷LiMn₂O₄ layer is somewhat thicker than the ⁶Li_xMn₂O₄ layer. A large reaction distribution was observed for the high rate experiment.

References

- [1] T. Ozuku, et. Al., J. Electrochem. Soc. 1990, 137, 769
- [2] R. Oishi et. al., Nucl. Instrum. Methods A600, (2009) 94.
- [3] R. Oishi et. al., J. Appl. Cryst., 45 (2012) 299.

Acknowledgment: This work was supported by RISING Project of NEDO.