Structural Study of Au-GEMA Nanoparticle by SANS, SAXS, TEM, and XAFS Techniques

K. Akutsu^{1#}, H. Iwase¹, Y. Nakatani², and T. Yoshimura²

¹Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

a corresponding author: k_Akutsu@cross.or.jp

Gold nanoparticles found have various applications in catalysis, optics, sensors. Stabilization gold nanoparticles has been employed using a variety of alkanethiols, surfactants, and In order develop polymers. size-controlled synthesis method of gold nanoparticle, we synthesized amphiphilic multi-sugar type oligomers, C₁₂-mGEMA (GEMA is

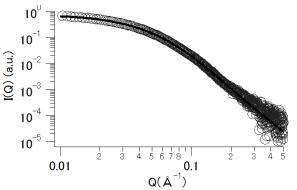


Fig. 1 SAXS data (\bigcirc) and model fitting curve (-) for Au-C₁₂-3.0GEMA nanoparticles.

glucosyloxyethyl methacrylate, m denote polymerization degree of GEMA), as a stabilizing surfactant for the gold nanoparticles. Previously, the aggregation behaviors of C_{12} -mGEMA in aqueous solution were investigated by using small-angle neutron and X-ray scattering (SANS and SAXS) techniques. We found that C_{12} -mGEMA aggregates formed globular micelles with the radius of ca. 3.7 nm in aqueous solution. In this study, we investigated the structure of Au-GEMA nanoparticle by using combining use of SANS, SAXS, transmission electron microscope (TEM), and X-ray absorption fine structure (XAFS) techniques.

SANS, SAXS, and XAFS experiments were performed on BL15 at MLF/J-PARC, BL40B2 at SPring-8, BL27B at KEK-PF, respectively. Fig.1 shows the SAXS profiles for Au-C₁₂-3.0GEMA nanoparticles in aqueous solution. A model-fitting analysis result using theoretical scattering function of polydispersed sphere with log-normal size distribution suggested that the average radius of Au-C₁₂-3.0GEMA nanoparticle is 1.5 nm. The size distribution was consistent with that estimated by TEM-results. Comparing with the radius of C₁₂-3.0GEMA aggregate, it indicated that Au-C₁₂-3.0GEMA nanoparticle cannot grow larger than the size of C₁₂-3.0GEMA micelles. In this presentation, we will show the SANS and XAFS results and discuss the detailed structure of Au-C₁₂-3.0GEMA nanoparticles.

² Research Group of Chemistry, Division of Natural Sciences, Nara Women's University, Nara 630-8506, Japan