## Magnetic frustration in iridium spinel compound CuIr<sub>2</sub>S<sub>4</sub>

K. M. Kojima,<sup>1,2</sup> <u>R. Kadono</u>,<sup>1,2,\*</sup> M. Miyazaki,<sup>1</sup> M. Hiraishi,<sup>1</sup> I. Yamauchi,<sup>1</sup> A. Koda,<sup>1,2</sup> Y. Tsuchiya,<sup>3,†</sup> H. S. Suzuki,<sup>3</sup> and H. Kitazawa<sup>3</sup>

The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan <sup>3</sup>Quantum Beam Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan

Geometrical frustration in electronic degrees of freedom has been one of the major topics in the field of condensed matter physics, for which inorganic compounds with the AB<sub>2</sub>X<sub>4</sub> cubic spinel structure consisting of corner-shared network of transition metal ions (A and/or B) have served as fascinating stages. The thiospinel compound,  $\text{CuIr}_2\text{S}_4$ , is such a recent example, in which a charge order of mixed-valent Ir ions into isomorphic octamers of  $\text{Ir}_8^{3+}\text{S}_{24}$  and  $\text{Ir}_8^{4+}\text{S}_{24}$  is realized upon metal-insulator (MI) transition at  $T_{\text{MI}} = 230 \text{ K}[1]$ . As per the currently accepted scenario regarding the  $t_{2g}$  manifold, the frustration is relieved by the formation of  $\text{Ir}^{4+}$  (5d<sup>5</sup>, S = 1/2) dimers that accompany the spin-singlet ground state driven by orbital order and the associated spin-Peierls instability[2].

Here, we demonstrate via a muon spin rotation and NMR experiments that the electronic ground state of  $CuIr_2S_4$  is not the presumed spin-singlet state but a novel paramagnetic state that exhibits a quasistatic spin glass-like magnetism below  $\sim 100$  K (see Fig.1)[3]. The present result indicates that the geometrical frustration remains partially unresolved even after  $Ir^{4+}$  dimarization, suggesting that strong spin-orbit interaction may be playing an important role in determining the ground state.

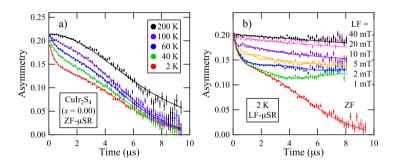



FIG. 1: a)  $\mu SR$  spectra in CuIr<sub>2</sub>S<sub>4</sub> under zero external field, observed at several temperatures. b)  $\mu SR$  spectra at 2 K under a longitudinal field up to 40 mT.

<sup>&</sup>lt;sup>1</sup>Muon Science Laboratory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan <sup>2</sup>Department of Materials Structure Science,

<sup>[1]</sup> P. G. Radaeli et al., Nature 416, 155 (2002).

<sup>[2]</sup> D. I. Khomskii and T. Mizokawa, Phys. Rev. Lett. **94**, 156402 (2005).

<sup>[3]</sup> K.M. Kojima et al., Phys. Rev. Lett., in press.

<sup>\*</sup>Electronic address: e-mail:ryosuke.kadono@kek.jp

<sup>&</sup>lt;sup>†</sup>Present address: Superconducting Wire Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan