A Neutron Imaging Detector Based on the µPIC Micro-Pixel Chamber and Its Application to Time-Resolved Measurement Techniques at the J-PARC MLF

<u>J.D. Parker</u>^{1,#,*}, M. Harada², K. Hattori¹, M. Ikeno^{3,4}, S. Iwaki¹, S. Kabuki¹, H. Kubo^{1,4}, Y. Matsuoka¹, K. Miuchi¹, T. Mizumoto¹, H. Nishimura¹, T. Oku², T. Sawano¹, T. Shinohara², J. Suzuki⁵, A. Takada¹, M. Tanaka^{3,4}, T. Tanimori¹, T. Uchida^{3,4}

¹Physics Department, Kyoto University, Kyoto 606-8502, Japan

²J-PARC Center, JAEA, Tokai, Ibaraki 319-1195, Japan

³Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan

⁴ Open Source Consortium of Instrumentation (OpenIt), Tsukuba, Ibaraki 305-0801, Japan

⁵ CROSS-Tokai, Tokai, Ibaraki, 319-1106, Japan

a corresponding author: j_parker@cross.or.jp

The development of high-intensity, pulsed neutron sources, such as at the J-PARC Materials and Life Sciences Facility (MLF), has opened the door to new and powerful imaging techniques which take advantage of the precision measurement of neutron energy by time-of-flight (TOF) to greatly expand the capabilities of traditional radiography. To take advantage of these TOF-based techniques and high neutron intensities, we developed a new-type neutron imaging detector based on the micro-pixel chamber (µPIC), a type of micro-pattern gaseous detector, coupled with an all-digital, high-speed data acquisition system [1]. The detector uses ³He for neutron detection (18% efficiency at 25.3 meV) and records the three-dimensional tracks of the reaction products, including energy deposition via time-over-threshold. This unique tracking method leads to a good spatial resolution of less than 120 μ m (σ), as well as near perfect background rejection (γ -sensitivity less than 10^{-12}). This detector will be installed at the dedicated neutron imaging beamline (BL22) now under construction at the J-PARC/MLF [2]. We present recent results obtained with our detector at NOBORU/BL10 of the J-PARC/MLF for magnetic imaging of an amorphous iron foil using polarized neutrons. We also discuss recent and future upgrades to the detector for increased ease-of-use and improved spatial resolution and rate performance.

References

- [1] J.D. Parker et al., Nucl. Instr. and Meth. A **726**, 23 (2013).
- [2] Y. Kiyanagi et al., Phys. Proc. 43, 92 (2013).

^{*} Present address: CROSS-Tokai, Tokai, Ibaraki 319-1106, Japan