## Wide Relaxation Time Distributions of Quasi-Elastic Neutron Scattering in relaxor ferroelectrics

M. Matsuura<sup>1#</sup>, T. Tominaga<sup>1</sup>, T. Yamada<sup>1</sup>, Y. Kawakita<sup>2</sup> and K. Shibata<sup>2</sup>

# a corresponding author: E-mail m\_matsuura@cross.or.jp

Relaxor ferroelectrics have gained much scientific and industrial attention due to their extremely high piezoelectric and dielectric responses in a wide temperature range [1]. These materials also exhibit a remarkable dielectric frequency dispersion that extends over 10 orders of magnitude in frequency [2]. The characteristic features of relaxors have been attributed to randomly-oriented polar nanoregions (PNRs), which are local regions of ferroelectric order that are roughly several tens of nanometers in size.

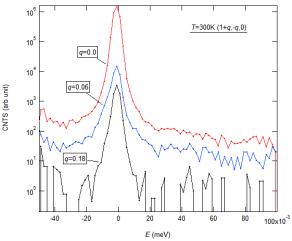



Fig. 1 Q dependence of quasi-elastic neutron scattering at T=300K at (1+q,-q,0).

In order to study the relaxation processes of PNRs, we have measured quasi-elastic neutron scattering in relaxor ferroelectric  $0.63(Pb(Mg_{1/3}Nb_{2/3})O_3)-0.37(PbTiO_3)$  by using the TOF type Si crystal analyzer near backscattering spectrometer "DNA" installed at BL02 of Materials and Life Science Experimental Facility in the J-PARC. Figure 1 shows Q dependence of quasi-elastic neutron scattering (QENS) near (100) Bragg point measured at T=300K. Near q=0, we observed narrow QENS with half-width-at-half-maximum (HWHM:  $\Gamma$ ) of ~20  $\mu$ eV. In addition, broad QENS with  $\Gamma$  of a few hundreds  $\mu$ eV coexists, which are observed as higher intensities at ~100 $\mu$ eV. These QENS indicate wide relaxation time distributions, which is consistent with the dielectric susceptibility measurements. The Q-dependence of the distribution function  $B(Q,\Gamma)$  will be discussed.

## References

- [1] S.-E. Park and T. R. Shrout, J. Appl. Phys. 82 (1997) 1804.
- [2] V. Bovtun *et al.*, Ferroelectrics **298**, 23 (2004).

<sup>&</sup>lt;sup>1</sup> Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan.
<sup>2</sup> Neutron Science Section, J-PARC Center, JAEA, Tokai, Ibaraki 319-1195, Japan