Operando µSR on Li- and Na-ion batteries in J-PARC

I. Umegaki^{1,2,3,#}, D. Igarashi⁴, K. Ohishi⁵, R. Tatara⁶, K, Nakamoto⁴, A. D. Pant¹,

M. Hiraishi⁷, J. G. Nakamura^{1,3}, A. Koda^{1,2,3}, S. Komaba⁴ and J. Sugiyama⁵

¹ Muon Science Laboratory, Institute of Materials Structure Science, KEK, Tokai, Ibaraki,

319-1106, Japan

² J-PARC Center, Tokai, Ibaraki 319-1195, Japan

³ The Graduate Univ. for Advanced Studies, SOKENDAI, Tsukuba, Ibaraki, 305-0801, Japan

⁴ Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-0826,

Japan

⁵ Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki, 319-1106, Japan

⁶ Department of Chemistry and Life Science, Yokohama National University, Yokohama, Kanagawa,240-0067, Japan

7 Graduate School of Science and Engineering, Ibaraki Univ., Mito, Ibaraki 310-8512, Japan # a corresponding author: E-mail umegaki@post.kek.jp

A self-diffusion coefficient (D^{J}) of Li⁺ (Na⁺) is an intrinsic property of Li⁺-ion (Na⁺-ion) battery materials and is detected with a muon spin rotation and relaxation (μ SR) technique through the observation of a fluctuating nuclear magnetic field formed by Li⁺ (Na⁺) ions [1].

Due to the high counting rate of μ SR in Muon Scientific Establishment (MUSE) of J-PARC, which was achieved by the increase in the proton current and the improvement of detecting systems, we can observe the internal nuclear magnetic field in the battery materials during a charge and discharge reaction.

Fig. 1 An operando μ SR cell.

In fact, using a special electrochemical half-cell (Fig.1), D^{J} has been measured with an operando manner by μ SR [2-3]. However, in our initial attempts, the operando μ SR measurements were performed only at room temperature. In order to study the temperature dependence of D^{J} , we have designed a temperature control system for the operando μ SR cell at temperatures between 0 and 80 °C.

[1] J. Sugiyama et al., Phys. Rev. Lett. 103, 147601 (2009).

[2] K. Ohishi, D. Igarashi, R. Tatara, I. Umegaki, A. Koda, S. Komaba, J. Sugiyama, ACS Applied Energy Materials, **5**, 10, (2022).

[3] K. Ohishi, D. Igarashi, R. Tatara, I. Umegaki, J. G. Nakamura, A. Koda, M. Månsson, S. Komaba, J. Sugiyama, ACS Applied Energy Materials, **6**, 15, (2023).