Muon Microscopy Projects in J-PARC

Y. Nagatani^{1#}, J. Ohnishi², Y. Nakazawa², Y. Oishi¹, S. Nakamura³, T. Adachi², T. Adachi¹, A. Goto¹, P. Strasser¹, M. Tampo¹, S. Doiuchi¹, K. Shimomura¹, and Y. Miyake¹

¹High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan
²RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
³ Ibaraki University, Hitachi, Ibaraki 316-0033, Japan

a corresponding author: Yukinori.nagatani@kek.jp

We reports the current status of the muon microscopies beeing developped at J-PARC. The transmission muon microscope T μ M is an analog of the transmission electron microscope (TEM). By employing the strongest penetration power into materials of muons, the T μ M allows us to observes thicker objects compare than the TEM. The T μ M can visualize distribution of the electromagnetic field in the specimen of sub-milimeter scale. This capability is usefull to improve power-devices, like power-semiconductor devices, ceramic condensors, magnets, piezo-devices, and so on by visualizing the internal electric- or magnetic- field of the devices. We are developping the 5MeV T μ M at U-line, which emplyes muon-cyclotron to accelerate ultra-slow muon beam, and we are planning to construct the 40MeV T μ M at H-line by collabolation with muon g-2/EDS experiment. One of the key technologies is muon beam cooling to generate high brightness muon beam. We are constructing multi-step beam cooling system which procuces muon beam fosued into 30 nm spot. We are also developping the canning positive muon microscope (S μ ⁺M) which is an analog of the scanning electron microscope (SEM). As an application of the multi-step muon beam cooling, the focued muon beam is used to scanning-imaging. The S μ +M will works as scanning muon spin rotation microscope, and it visualizes distribution of the magnetic properties or hydrogen-status on the surface of the specimen. The scanning negative muon microscope (S μ M) is also planed to develop. The S μ M will visualize the distribution of elements, isotopes and chemical situations on the specimen.