A new approach for Mu-Mu conversion search

<u>N. Kawamura</u>^{1, 2#}, S. Kanda^{1, 2}, S. Matoba^{1, 2}, T. Fukuyama³, Y. Mimura⁴, and Y. Uesaka⁵, R. Kitamura⁶, T. Mibe^{2, 7, 8}

¹ Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305-0801, Japan
² Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
³ Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
⁴ College of Science and Engineering, Ritsumeikan University, Kyoto, Kyoto 603-8577, Japan
⁵ Dept. of Fundamental Education, Dokkyo Medical University, Tochigi, 321-0293, Japan
⁶ Accelerator Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
⁷ Institute of Particle and Nuclear Studies, KEK, Tokai, Ibaraki 319-1106, Japan

⁸ Particle and Nuclear Physics Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan

a corresponding author: E-mail nari.kawamura@kek.jp

The conversion from muonium (Mu, μ^+e^-) to antimuonium (Mu, μ^-e^+) is strongly suppressed in the Standard Model (SM) of particle physics because it violates the conservation of the leptonic family number. On the other hand, many SM extensions predict the Mu-Mu conversion is observable level, just below the current experimental upper limit of 8.3×10^{-11} [1], which is determined by beam-related background. A new method is required to go beyond the limit.

We propose a new method to search for the Mu-Mu conversion: Mu produced in a silica aerogel is emitted to a vacuum. By shooting the ionization laser for Mu/Mu, dissociated μ^- is transported by electric and magnetic components. Because there is no source of μ^- in such an experimental setup, background-free search can be conducted. The method is inspired by the ultra-slow μ^+

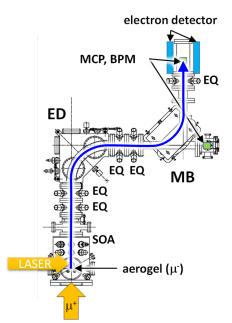


Fig. 1 Experimental setup of the feasibility study in MLF

beam [2], just switching the beamline polarity. This method has pros in scanning magnetic field while the precursory study had to apply a high field to analyze the β -decay electron.

We will present the details of the concept and the R&D status.

References

- [1] L. Willmann et al., Phys. Rev. Lett. 82 491 (1999).
- [2] S. Kanda et al., J. Phys.: Conf. Ser. 2462 012030.